Fakultät für Physik
print

Links und Funktionen

Navigationspfad


Inhaltsbereich

R oder T0: Rechenmethoden der Theoretischen Physik (WS 2021/2022) – Skript

Vorlesung Zugriffschutz:
Userid: ihre eigene Campus-Kennung ( ohne @campus.lmu.de ! ).
Passwort: ihr eigenes Passwort.

Hinweise zur Benutzung des Skripts (und Tipps zum Öffnen der pdf-Dateien) finden Sie hier.

Das handschriftliche Skript wird ergänzt durch ein Buch in englischer Sprache, mit dem Titel Mathematics for Physicists: Introductory Concepts and Methods, verfasst von Alexander Altland und Jan von Delft, Cambridge University Press, 2019 (Akronym: AD-Buch). Alle in der untenstehenden Tabelle ausgewiesenen Abschnitte dieses Buches sind klausurrelevant.
Hinweise zur Benutzung des AD-Buches.

Literatur
T0-Stoffplan, Kombinierter T0-E1-Stoffplan

Nr. Datum Vor Lücke Nach Quiz Skript Buch Thema
10 17.11.21 V3.1-2
V3.1a-d
V3.2a-m
ZV3a
V3.1-2 Skalarfelder: Höhenlinien, totales Differential; Gradient, Nabla-Operator.
09 15.11.21 C4
C4h-C4q
ZC4b
C4.2-4 Integration mit krummlinigen Koordinaten: 2D Flächenintegral mit Polarkoordinaten, Kreisfläche; 3D Volumenintegral; Volumen, Trägheitsmoment von Zylinder und Kugel, Krummlinige Flächenintegrale.
Fr. 12.11.21
14:15-16:00
Zentralübung zu Blatt 04
08 10.11.21 V2
V2a-V2m
ZV2a-b
V2 Krummlinige Koordinaten: Polarkoordinaten in der Ebene, Koordinatenlinien, lokale Basis; Kurvengeschwindigkeit und Beschleunigung; Linienintegral in Polarkoordinaten; Zylinderkoordinaten, Kugelkoordinaten
07 08.11.21 C3-4
C3a-C3l
C4a-C4g
ZC3
ZC4a
C3
C4.1
partielle Ableitungen, Satz von Schwarz. Mehrdimensionale Integrale, Satz von Fubini, variable Integrationsgrenzen, Anwendung: Kreisfläche, Trägheitsmoment v. hom. Quader.
06 03.11.21 pdf pdf pdf V1
V1a-V1n
ZV1
V1 [V = Vektoranalysis] Raumkurven: vektorwertige Funktionen, Geschwindigkeit, Beschleunigung, Bogenlänge, natürliche Parametrisierung. Linienintegral: Definition, Beispiel [Arbeit entlang eines Weges r(t)].
01.11.21 Allerheiligen. Ersatztermin: Fr. 29.10.21.
05 29.10.21
Freitag!
pdf pdf pdf L4
L4a-L4m
ZL4
L4 Vektorprodukt: Levi-Civita-Symbol, Kontraktions-Identität, allgemeine Eigenschaften des Vektorprodukts, Grassmann-Identität, Spatprodukt.
04 27.10.21 pdf pdf pdf pdf L3.1a-g
L3.2a-f
L3.3a-c
ZL3a-b
L3 Euklidischer Raum:
Skalarprodukt; Norm, Winkel zwischen Vektoren, Orthogonalität, Orthonormalität, Gram-Schmidt-Verfahren; reelles Inneres Produkt, Metrik; komplexes inneres Produkt
Feedback
03 25.10.21 pdf pdf pdf pdf L2.1-5
L2.1a-c, L2.2a-b
L2.3a-e, L2.4a-g
L2.5a-b
ZL2a-c
L2 Vektorraum: geometrische Anschauung, R^n, formale Definition, Beipiele: Pfeile, R^n, Funktionenraum; Span, lineare Unabhängigkeit, Vollständigkeit, Basis, Dimension, Einsteinsche Summenkonvention, Standardbasis in Rn. Isomorphismus zwischen n-dimensionalem V und R^n. Siehe auch Netzfund-Videos zu Linearen Algebra
ZÜ01 21.10.21 Zentralübung zu Blatt 01
02 20.10.21 pdf pdf pdf pdf C1-2
C1a-f
C2a-f
ZC1-2
C1
C2
[C = Calculus = Diff. & Int.-Rechung] Differenzieren: geometrische Interpretation, formale Definition, Rechenregeln, Beispiele
Integrieren: geometrische Interpretation, formale Definition, Hauptsatz der Diff. und Integralrechnung Rechenregeln, partielle Integration, Substitution. Siehe auch Netzfund-Videos zu Calculus
01 18.10.21 pdf pdf pdf pdf L1
L1a-o
ZL1
L1 [L = Lineare Algebra] Mathematische Grundbegriffe: Menge, Abbildung, Gruppe, Körper, komplexe Zahlen
00 13.10.21 pdf O-Phase: Wozu Rechenmethoden?
00 13.10.21 pdf O-Phase: Allgemeine Anmerkungen
00 13.10.21 pdf Eugene Wigner (lesenswerter Aufsatz): The Unreasonable Effectiveness of Mathematics in the Natural Sciences
00 Selbststudium pdf Trigonometrische Funktion
00 Selbststudium Sehr empfehlenswert zur Auffrischung ihres Schulwissens: das schöne Skript zu einem mathematischen Vorkurs von Andreas Schadschneider, Uni-Köln. Die Folien, die ich selbst zu diesem Thema beim Mathematischen Vorkurs (Vorlesungen 3 und 4) an der LMU (30.09-08.10.2013) geschrieben habe, finden Sie hier, und die entsprechenden Videos hier.
Z:NL pdf Zusammenfassungen (Nebenfach, Lehramt):
Zusammenstellung der Zusammenfassungen aller Vorlesungen 01-18 (Stoff für Nebenfach & Lehramt)
Z:BP pdf Zusammenfassungen (Bachelor Physik)
Zusammenstellung der Zusammenfassungen aller Vorlesungen 01-28 (Stoff für Bachelor Physik).