Fakultät für Physik
print

Links und Funktionen

Navigationspfad


Inhaltsbereich

Tensor Networks 2021 – Lecture notes

Lecture notes

The course schedule (Stoffplan) can be downloaded here.
(Some minor reshuffling of topics might occur during the course of the semester.)

Lecture style

 

Lecture Date Notes Pages Topic
T16 20.07.21 Tutorial: MPS-based machine learning (optional)
L26 15.07.21 pdf ML
ML.1
ML.2
Machine learning
1. Neural networks
2. Supervised learning with tensor networks
L25 14.07.21 pdf F-PEPS
F-PEPS.1
F-PEPS.2
F-PEPS.3
F-PEPS.4
Fermionic PEPS
1. Parity conservation
2. Fermionic signs
3. Jump move
4. Examples
T15 13.07.21 Tutorial: GILT, FET
L24 08.07.21 pdf CanF
CanF.1
CanF.2
CanF.3
CanF.4
2D Canonical Forms, Isometric PEPS
1. Canonical form for bond in 2D tensor network
2. Full environment truncation
3. Isometric PEPS: Moses move
4. Isometric PEPS: Applications
L23 07.07.21 pdf TNR
TNR.1
TNR.2
TNR.3
TNR.4
TNR.5
TNR.6
TNR: Tensor network renormalization
1. Motivation
2. TNR idea
3. Projective truncation
4. TNR details
5. TNR results in MERA
6. TNR benchmark results
T14 06.07.21 Tutorial: TRG, simple update
L22 01.07.21 pdf TRG-II>
TRG-II.1
TRG-II.2
TRG-II.3
TRG-II.4
TRG-II.5
TRG-II.6
TRG-II: Graph-independent local truncations (Gilt)
1. Motivation
2. Why is TRG insufficient?
3. Environment spectrum
4. Gilt: Graph-independent local truncations
5. Gilt-TNR
6. Benchmark res
L21 30.07.21 pdf TRG
TRG-I.1
TRG-I.2
TRG-I.3
TRG-I.4
Tensor renormalization group (TRG)
1. TRG for 2D classical lattice models
2. TRG for quantum lattice models
3. Second renormalization (SRG) of tensor network states
4. Core tensor renormalization group (CTRG)
T13 29.07.21 Tutorial: Finite PEPS
L20 24.07.21 pdf PEPS-II
PEPS-II.1
PEPS-II.2
PEPS-II.3
PEPS II: contractions via MPS techniques
1. PEPS via finite-size MPS
2. Infinite-size PEPS (iPEPS)
3. Corner transfer matrix (CTM)
L19 23.07.21 pdf PEPS-I
PEPS-I.1
PEPS-I.2
PEPS-I.3
PEPS-I.4
PEPS I: Projected entangled-pair states
1. Motivation and Definition
2. Example: RVB state
3. Example: Kitaev's Toric Code
4. Example: Resonating AKLT state
T12 22.06.21 Tutorial: NRG II
L18 17.06.21 pdf NRG-IV
NRG-IV.1
NRG-IV.2
NRG-IV.3
NRG-IV.4
NRG IV: Spectral function, fdm-NRG
1. MPS notation for discarded/kept states
2. Complete many-body basis
3. Full-density-matrix NRG (fdmNRG)
4. Spectral functions for SIAM
L17 18.06.21 pdf NRG-III
NRG-III.1
NRG-III.2
NRG-III.3
NRG-III.4
NRG III: Thermal and dynamical quantities
1. Thermodynamic observables
2. Wilson ration.
3. Lehmann representation of spectral functions
4. Single-shell and patching schemes
T11 15.06.21 Tutorial: NRG I
L16 10.06.21 pdf NRG-II
NRG-II.1
NRG-II.2
NRG-II.3
NRG-II.4
NRG-II.5
NRG II: RG flow, fixed points
1. General RG concepts
2. NRG iteration scheme from RG perspective
3. Uncoupled bath Hamiltonian: fixed points
4. Kondo model: fixed points and RG flow
5. Anderson model: fixed points and RG flow
L15 09.06.21 pdf NRG-I
NRG-I.1
NRG-I.2
NRG-I.3
NRG-I.4
NRG I: Numerical Renormalization group - Wilson chain
1. Single-impurity Anderson model
2. Logarithmic discretization
3. Wilson chain
4. Iterative diagonalization
T10 08.06.21 Tutorial: Finite temperature. TDVP. QSpace tDMRG (optional)
L14 02.06.21 pdf TS
TS.1
TS.2
TS.3
TS.4
Tangent space methods (TDVP)
1. MPS and canonical forms.
2. Tangent space.
3. Tangent space projector.
4. Time evolution.
T09 01.06.21 Tutorial: tDMRG, subspace expansion, error estimates
L13 27.05.21 pdf DMRG-III.1-4 DMRG III: tDMRG, finite temperature (purification, XTRG)
1. tDMRG
2. Error analysis
2. Purification
4. Exponential tensor renormalization group (XTRG)
L12 26.05.21 pdf
DMRG-II
DMRG-II.1
DMRG-II.2
DMRG-II.3
DMRG-II.4
DMRG II: original, subspace expansion, error estimates
1. Relation to original DMRG.
2. One-site update with subspace expansion.
3. Error estimates
T08 25.05.21 Tutorial: iTEBD. QSpace DMRG (optional)
L11 20.05.21 pdf iTEBD
iTEBD.1
iTEBD.2
iTEBD.3
iTEBD.4
iTEBD.5
iTEBD: Infinite Time-Evolving Block Decimation
1. Vidal's Gamma-Lambda notation
2. Basic iTEBD algorithm
3. iTEBD in Gamma-Lambda notation
4. Hasting's method
5. Orthogonalization
T07 19.05.21 Tutorial: DMRG
T06 18.05.21 Tutorial: Symmetries & QSpace II
L10 12.05.21 pdf DMRG-I
DMRG-I.1
DMRG-I.2
DMRG-I.3
DMRG-I.4
DMRG I: Density Matrix Renormalization Group - ground state search
1. Single-site optimization
2. Lancos Method
3. Excited states
4. Two-site update
L09 12.05.21 Sym-III.1
Sym-III.2
Sym-III.3
Sym-III.4
Symmetries III: Outer multiplicity, X-symbols. (optional; was omitted in 2021)
1. Motivation
2. Outer multiplicity
3. Arrow inversion
4. Pairwise contractions and X-symbols
T05 12.05.21 Tutorial: Symmetries & QSpace I
L08 06.05.21 pdf Sym-II
Sym-II.1
Sym-II.2
Sym-II.3
Sym-II.4
Sym-II.5
Sym-II.6
Sym-II.7
Symmetries II: Non-Abelian.
1. Motivation, SU(2) basics
2. Tensor product decomposition
3. Tensor operators
4. A-matrix factorizes
5. Example: two spin 1/2's
6. Example: three spin 1/2's
7. Bookkeeping for unit matrices
L07 05.05.21 pdf Sym-I
Sym-I.1
Sym-I.1
Sym-I.1
Symmetries I: Abelian (revised and improved version)
1. Example: spin 1/2 XXZ-chain
2. Iterative diagonalization
3. QSpace bookkeeping for unit matrices
T04 04.05.21 Tutorial: AKLT Model, MPO methodology
L06 29.04.21 pdf MPS-IV
MPS-IV.1
MPS-IV.2
MPS-IV.3
MPS IV: Matrix product operators
1. Applying MPO to MPS yields MPS
2. MPO representation of Heisenberg Hamiltonian
3. Applying MPO to mixed-canonical state
4. MPS representation of Fermi sea
L05 28.04.21 pdf MPS-III
MPS-III.1
MPS-III.2
MPS-III.3
MPS-III.4
MPS-III.5
MPS-III.6
MPS-III.7
MPS III: Translationally invariant MPS, AKLT model
1. Transfer matrix
2. AKLT model
3. AKLT ground state
4. Transfer operator and string order parameter
T02 27.04.21 Tutorial: MPS, iterative diagonalization
L04 22.04.21 pdf
MPS-II
MPS-II.1
MPS-II.2
MPS-II.3
MPS II: Diagonalization, fermionic signs
1. Basis change.
2. Iterative diagonalization of short spin chain.
3. Spinless fermions
4. Spinful fermions
L03 21.04.21 pdf MPS-I
MPS-I.1
MPS-I.2
MPS-I.3
MPS-I.4
MPS I: Basic properties
1. Overlaps, matrix elements.
2. Left- and right-normalized states.
3. Matrix elements of local operators.
4. Canonical MPS forms (left, right, site, bond).
T02 20.04.21 Tutorial: Tensor network basics
T01 15.04.21 Tutorial: MATLAB 101
L02 14.04.21 pdf TNB-II
TNB-II.1
TNB-II.2
TNB-II.3
TNB-II.4
Tensor Network basics II
1. Singular-value decomposition (SVD)
2. Schmidt decomposition
3. Iterative diagonalization
4. Rewriting any tensor as MPS
L01 13.04.21 pdf TNB-I
TNB-I.1
TNB-I.2
TNB-I.3
TNB-I.4
Tensor Network basics (TNB) I
1. Notation for generic quantum lattice systems.
2. Entanglement entropy and area laws
3. Tensor network diagrams
4. Covariant index notation