DMRG II: Original DMRG, subspace expansion

DMRG-II.1

1. Original formulation of DMRG [White1992], [White1993], [Schollwdck2011, Sec 2.2]

Goal: finding ground state of infinite chain

Infinite-size DMRG (iDMRG)

Diagonalize small system (e.g. 2 sites), write ground state in the form

¥y = Z ey lay g% TR

KF 6L (o
—— ——
o, 5%

'‘Block L' describes left part of system, with basis { ‘ °<>L i

'Block R' describes right part of system, with basis z ( [s)R j

Now add two sites between blocks L and R, and seek new ground state of H LeeR of the form

Q]

o\G‘L s G‘R (g
5 = |[57 le, 16 Yl 7 \‘/ML'GAS & Y ¢
AR ‘ rues @
. o ; [
by minimizing (Lanzcos) (o HL.,Kl"D [,,()L L 6 165
Gy

o6, §
Bond dimension has grown from T)xD for q,“r’ to Ddy Do{ for t{f ’ ‘Fé , SO truncation is needed.
Split enlarged system in the middle, and call left side (new) block L, right side (new) block R.

Write ground state in the form

ab
L L, R b ¢)
with composite indices & = (x 6, ) { = ((3:611) lad, lo2g
of dimension @A = D“ o . White's truncation prescription: compute reduced DM of . &,
o diagonalize —
= T (N = l ! a =
F.. T,0 ¥ % ) Y s L<al ; \°>LP= L<c| ()
(.PL-) a
Construct truncated basis for block L, using the D eigenvectors | <~_7 with the largest
igenval Rename: Iol >M"J = |(V> here truncation haLens
eigenvalues PC' ename: ) C’L‘ PP
Ditto for block R. » ,q,u 6,16 F
4
: . )
Then iterate,: add two more sites, etc. ]; 4 Py P\ ] |
R

L
lo()L 8%

Page 1



Then iterate,: add two more sites, etc. 4 4 Py | ) |
R s, 6, R
L 3
lo()L tpﬁ

Remark: we established early on (see MPS-II.2) that the eigenvalues /be of reduced density matrix of L,
are obtained by SVD of ,,%a‘:;

Fo

Q ——

w o

PY
L

= &

L = f)° = <Scc)z

Qa [

So retaining the PL-eigenstates with largest {0 < is equivalent to just doing SVD-truncation on Lf’ ab i

Modern formulation

A A RABR g
Start with MPS in bond-canonical form: R G B B w |
\———Y_J
L R
, ' A W ®
Add two central sites and find ground state (Lanczos): N R T o e
— —_—
L ~ e a R
, - ] AN R
Do SVD to split chain into two larger blocks, and truncate: —— T
L R

Iterate: make chain longer and longer, until ground state energy per site converges.

'iDMRG state prediction’ [McCulloch2008], [Schollwéck2011, Sec. 10.1]

To speed up Lanczos search for ground state, construct initial guess for 1{’ from previous data:

initial Ansatz ﬁ A N 6 QR-decomposition
L TR
A% = AN B A A AR _ A AA A § B

—

o~

Logic: let A be followedby AB ,and R preceded by AN ' /\""“{;l

-1 : M,
to reverse arrows between B and A , use A use this to initialize Lanczos

This leads to 'dramatic speedup' of iDMRG.

Finite-size DMRG

Grow chain to some length N using infinite-size DMRG algorithm. T 1 I B S
L——w\_g' -
L R
Then reduce L, enlarge R, optimize t{/: ,LI
R T [ W I
Diagonalize , truncate.
fu £
LR U T ]
D e T -———
L R

Iterate: sweep back and forth until convergence.

This is conceptually identical to variational optimization with two-site update.

Single-site DMRG is also possible & variational single-site update.
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2. Subspace expansion for 1-site DMRG 'strictly single-site DMRG (DMRG3S)' DMRG-II.2

Problem: when exploiting quantum numbers, 1-site DMRG performs poorly, because it does not explore
subspaces with different quantum numbers. An early remedy for this is 2-site DMRG, but that is
computationally much more expensive than 1-site DMRG. Subsequent suggestions for 1-site DMRG with
symmetries are 'density matrix perturbation' [White2005], the 'center matrix wave function formalism
[McCulloch2007], and, most recently, 'subspace expansion' [Hubig2015], which performs best.

Reminder of 1-site DMRG, A A M Breg B 0
in site-canonical representation: Y P+ rp 0k N
Local basis: |, ¢, p > = Pl e | L™ \,()Q ' s V84
Minimize energy with constraint of _);__ 1) _ ] ~ @)
fixed normalization, 1 site at a time: '}/’5”‘] IR ACHIY] = 0
o M
n A L 3 h R R M[‘(‘l, ) MTC]
5 > {-4 4 B )‘ \"\ ’ I( [ =_o(_;_‘r¢_[s @)
AP R W - b G
¢ €, PA' e [ 7 zipper

Li-g Wi Rpesn

al 4 &' _ N f . ()
HiepaMis = > Mg with  Hey = Ly Wiy Ry = 55
o = (V)SIPS i o
Solve for 'eigenvector' with lowest eigenvalue, say F4'm , then do SVD on it to move to next site:
Mg Breg S° W(S V' Biew) A M
o Mgy Breeq =Y U v ) e My 53
D "D7T>»p o {f - Jp [ D
7 d ! M
Important: dimensions of ﬁ[e] are fixed, hence truncation is neither needed nor possible!
Reminder of 2-site DMRG, A Al M By 8 g
in site-canonical representation: Y Y < T ; r i\ r T
Local basis: |*,6, ¢ +):=| = ' v g '
/9, 'V “m\ a)\¢)\ a()M \,()Q-l \Pu .
©)
Minimize energy two sites at a time: A M{Q B[ef(]
a' & o Y @)
Hft’,(ﬂ} Q(Mfel E{eu]\ = ’}‘(Mm E’(eul) x| Tl
' —
a =, ¢, 5,\) <o Ty 7

Solve for 'eigenvector' with lowest eigenvalue, (M B) , then do SVD and truncate (!) to move to next site:

o "B spamas kS Vg qo (s Y g Ay M
T o= = s e D . > o i= B
Dd Dol Y4 DA D DA 2 D D D4 :E_ IF

@)
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Problem of single-site optimization: it is constrained to a variational space defined by outgoing state spaces

'f‘)m |°‘>¢,| . If the ranges of quantum numbers &.( and &F for these spaces are too small to accurately
represent the ground state, single-site DMRG has no way to enlarge them.

Two-site optimization does not have this problem: the action of H on two sites enlarges bond dimension in
between, adding the full range of quantum numbers needed on that bond. If a certain quantum number was
missing on that bond before the action of H, but appears afterwards with non-negligible weight, it will survive
after SVD and truncation. Hence: two-site optimization can add missing quantum numbers, if needed.

. . . . . . . z ,? 2,2
But this comes at a cost: effective two-site Hamiltonian has dimension 1 d «x D4 .

(9
By contrast, effective one-site Hamiltonian has dimension Did x D4 .
Example: 6-site chain of S=1/2 spins, exploiting Sz quantum numbers: & & §+ g 3
(9
)= .,A_ A x\ M E; B ,Y 5 ¢ B‘ v— [see SYM-1.3]
'T,’ 3,"1,& :,&z,i;: 8¢, 14 ?, ﬁh Mot sy 13007 -2y (3 [ ) 1 fug 1+21)
S : ! — @ikl T me 00 ne oy s
(o) = |&z)1,) 1305 = 10247
3 ’ . 44,00 ¢a | mt |:|
spin conservation: - (82 6} = 3 = 6,+ 0, ) Gaildal] 1 ]
(1
Cot [41| Mt B
= F>@%a Mo5: o (205 0% ' <oz |4l uet - -
1% E}\”@ A7) a My PBM}'((B B 5\~ 2|
¢ Lo |4 reg
= 1y I ey ey MERP g 9 <op [4-+1] ¥t :
sk 2 '3 Wp G fanl| ut :l
_ . VLN T §y, 00ty Loz qKatl| Wy
= l&y,l”>‘€3>l&z/lz>ﬂts} % 3’0]&;;’ ("') ¢ |:|

In general, the product M 3) Em has block matrix product structure, where

sum over bond index f = (@13 matches blocks with same Q3 :

i -3 —v 41 43 . &.3

O 6y, b (O 6y (O _ o6, By

. RN
i Nni

i}

/3

O i3 —- o
p : (3)

Bond dimensions: :Dz-dzx Dy = bkz2xs D3 X J(,,‘ Dy = gx2:u b2 X6

But in practice, we use truncated state spaces. Suppose D"'Ay =4,

with Do =y dy=2 D, = and that random initial state does not contain 83 = *3

Then the corresponding two blocks are missing in both MB] and B(a) :
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Truncated:

— 2 6, O

Moy B = | - L g L

() e U D . - |:| - (1¢)
F .

by
bx 4 b bxb

1-site optimization of truncated M 131 will never find a good ground state if the latter has
non-negligible contributions from missing blocks.

8> &3 @Oy 6~ &y @4
12 =1 -2 - 2 ~3 -z
2-site optimization reinstates missing block: E.g.: ANA RFTRTATY T IR < FEY
Ses +t n e I A B I E e B B Bl B
(W
|o(7 % % ()5 (15
action of spin-flip term on sites 3 and 4 —z—> 4 oA t-—e—'ﬁ bod
can increases range of Ot ¥ o5

Subspace expansion

1-site scheme that can 'expand' the variational space to recover missing blocks!

Suppose site { has been optimized by 1-site DMRG, yielding MI!] , defining 'current ground state' [ v, )

current approx. for ground state 1
Conceptual idea: if the variational space Sr‘,..\ % W?i is too small, expand it to sraw{ 14 Hiwe? }
/

all MPS with specified bond dimensions

explores more quantum numbers
and quantum numbers

(except if 1,7 is an exact eigenstate)

o~ ~ M%)

Concretely: define l*T’? = [(Y) ¢t C l\VQ and adjust ¢ to further minimize the energy. (u)

W 'mixing coefficient'

_ A AR M B

0 = W 15060109, (M) F By 2V = TR TF H’f r* i
L p —— s
shorthand -~ l“/‘-, 5,‘{7 ‘d7¢-. W7 Lt

A A Mm Blwl

' i ‘ ‘ L“ / = L ‘ F “ f"] B B
a7 ° Q 1 . ry_r)vj_t_r Ktll
pl 0O ° AJ < -_— ‘
‘ ’ < ‘ ; (d 4 (-3 b i : 2" iﬁ 1
L L4 :“ vd L R

o
Ts—r? ® ¥ <zr-—r" (18)

Crucial point: F enumerates all states possibly generated by action of H on sites ¢, {+/ , hence its

range can be larger than that of P in (17) for |‘(}',7 possibly including new quantum numbersI

Thus, virtual state space on this bond has been 'expanded': d'm(P ) = dim(& ) - dim( @)
[for an example, see (15)] ~

D = Dd (1)

For 6-site chain discussed earlier: for each fixed  :

(.. \*oF [ Y [ T m\26E [
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For 6-site chain discussed earlier: for each fixed 1 :

MO'F .3 s &6-\' ry o
(M(ﬂ\ (B&H]Bﬁ ¢ and ( L[:; ) f ‘_(R"‘“‘/‘)P '
= |*F [ = "o 1
( = i

E ~
\ i O 3
(20)
In (18), we identified coefficients tied to \G)lll)l,( andto ({157 :
- s M[Q -~ ~ B[em
- (/AP ° N P _ Ty ﬁ i
L[e] = > /“ (Zla-) ) K[f“] ‘P’/A = € :f_\\ J (Zlb)
41_’( . q"{_,_
“Op _
= (L {e- Wfq M ) (z2a) = (B {eﬂ\\«)[m]R[m])gﬂ” (22b)
dimensions: (D v ol }K (d\d ’ 5 ) dimensions: (D oo )K (d\,} ’ 5 ) (z3)

Now we add the two MPS in (16), by yet again expanding virtual state space and block-multiplying their tensors:

l‘:f’) = h",) ¥ (_(tfa) = |alo-, g7 [(Mm)ufﬁ (BRH]XPFY CLL"\Y"/AP (R(tﬂl)ﬁ,u ’) (2¢)

N T 1 Lo T Y
{M (e} CLIC! ] g r:n] = (‘N( ‘8) (5
x . Rieal £ (Dd)x(2d)
dim(Jg ) = dim(!s) +dim( f) - dim(/u ) (2¢€)
- —}43( -2
6-site ‘@ Mm L “‘:? ( 7t
example: % E”:l
Tl , B
A& R o, |
/3
EI g o
/ 0| .
Insert zeros in blocks previously not present in M{SJ EI m/‘ !
(]
O
EI EI K('&I/A 2
- * 8
‘ ..t



. \ El"p

t
To deal with large-dimension bond F ,useSVDon A = U SV and truncate back to (1

D
:/1/{ ) CE SVD (,(“5\ Y+,e5 truncate ((’(XS QE) ﬁ(ﬂ Mfes)
D b T ofy i A = T é NN
PRI P b SR R

(2?)
Left-normalized Qm is final result of optimization of site £ , and 'Vlm )] initializes optimization of site Cer.

0 - - - ”~n -
Crucial point: as mentioned earlier, may include larger range of quantum numbers than

If these contribute significant weight to 1) , then they will have significant weight in SVD of (27),
hence will survive the truncation in (27), and thus be present in A fey -

In this way, subspace expansion succeeds in 'reinstating missing quantum numbers' (without ever needing
to do Lanczos with huge effective 2-site Hamiltonian of 2-site DMRG!).

6-site example: if Q; = £ 1 carries significant weight, then SVD, EIEI

O
followed by trunction with dim( f>) = 4, will reinstate those blocks: —3
—/
] B
3] ¢x ez
24xy @s)

Remark: [Hubig2015] choose K{e“] 0 [instead of (22b)], arguing that it only affects M ()
which will be updated anyway when optimizing site €+ via Lanczos ground state solver in next iteration.
But using (21b) speeds up convergence for that Lanczos solver [Weichselbaum (private communication)].
Summary of subspace expansion algorithm 'strictly single-site DMRG (DMRG3S)'
Left-to-right sweep:
1. In site-canonical basis for site { , use 1-site DMRG to find optimized M[“

with HR] Mk] = E M 1 (z4)

new current energy estimate
. .V B = A

2- Expand subspace, Mgy By — Mm - &y = ( My by ) el | = Ay M[em

do SVD + truncation: » R feat (30

fu M
A ’ N ’ A K

3. Obtain 'post-expansion' energy estimate & = € r < (D)

g
Back to 1. and repeat. Lie-n A ﬂg,,\ﬂmz]

Right-to-left sweep is analogous, with

"

2. Expand subspace, Aff«] Mm - v&[e_de

do SVD + truncation:

('4{«41 ('L(l«t]){ M“‘l = Mg E(e)

Ria (22)

A
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A N y
3. Obtain 'post-expansion' energy estimate E = — & (s3)
L Kres
Choice of mixing coefficient ¢ : T Energy optimization
. optimization

energy change from 1-site optimization, /‘/ T AEr

usually < 0 truncation //T AE
(\E+ energy change from truncation, truncation

can be either < 0 or > 0. —

iterations

Behavior of energy changes depends on C
If € is too small, one can get stuck in local minimum, i.e.

If C is too large, truncation destroys changes made by previous local optimization, and 0 < AE T

Then reduce C for next iteration on next site. ()
If AEt is much smaller than or even negative, then one can increase < for next iteration.
In practice, start with ¢ =1 and aim for AEr = (for scheme of [Hubig2015], with R = 0)

and change C by multiplying with some factor greater/smaller than 1 (rather than subtracting/adding).
After several DMRG sweeps back and forth through the chain, the 'correct' quantum numbers will typically

have been found. So, one can eventually take < — & , returning to pure 1-site DMRG.

Remark: there may be better ways to choose ¢ : build the 2-dimensional Krylov space € = ] 1), Nf,?}

A
and choose ¢ suchthat Y7 = ly) ¢+ ¢ (4,7 s the ground state of in this space. (3s)

This corresponds to the first step of a Lanczos iteration, cf. DMRG-1.2, Egs. (6-11).

A A A 4
Orthogonalize: 1= lﬁ:) = P Hig,) - (4e) <wal PH {Yy) (z6)

= ) - [%oY (33)

Computing l"@) involves addition of two MPS, can be done as in (24,25) [no need for SVD + truncation
here], to arrive at an MPS with same bond dimensions as [we ) .

b' = J<€i’;|$|> = P b, = <’-{'«lHl'{'(> (33)

Qo b 0
Then diagonalize HK = ( b o » , its lower-energy eigenvector yields optimal ¢ . (34)
' ]
Then use that to compute a new lf(: 7 , and from that compute M' 8 =

as described in (24,25,27). Explore whether this yields better convergence behavior!

How can one estimate / control error during extrapolations with increasing bond dimension? See [Hubig2018].
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