
DMRG-II.1

Original formulation of DMRG1. [White1992], [White1993], [Schollwöck2011, Sec 2.2]

Goal: finding ground state of infinite chain

Infinite-size DMRG (iDMRG)

Diagonalize small system (e.g. 2 sites), write ground state in the form 

'Block L' describes left part of system, with basis

'Block R' describes right part of system, with basis

Now add two sites between blocks L and R, and seek new ground state of                    of the form 

by minimizing (Lanzcos)

Bond dimension has grown from            for            to                 for                  , so truncation is needed.

Split enlarged system in the middle, and call left side (new) block L, right side (new) block R. 

Write ground state in the form 

with composite indices 

of dimension .  White's truncation prescription: compute reduced DM of        ,

Then iterate,: add two more sites, etc. 

Construct truncated basis for block L , using  the         eigenvectors                  with the largest         

diagonalize

eigenvalues          .  Rename:                        here truncation happens

Ditto for block R. 

DMRG II: Original DMRG, subspace expansion
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Then iterate,: add two more sites, etc. 

Remark: we established early on (see MPS-II.2) that the eigenvalues          of reduced density matrix of L,             

are obtained by SVD of 

So retaining the      -eigenstates with largest         is equivalent to just doing SVD-truncation on 

Modern formulation

Start with MPS in bond-canonical form:

Add two central sites and find ground state (Lanczos):

Do SVD to split chain into two larger blocks, and truncate:

Iterate: make chain longer and longer, until ground state energy per site converges.

Finite-size DMRG

Grow chain to some length N using infinite-size DMRG algorithm.

Then reduce L, enlarge R, optimize      :

Iterate: sweep back and forth until convergence.

This is conceptually identical to variational optimization with two-site update.

Single-site DMRG is also possible         variational single-site update.

Diagonalize         , truncate.

'iDMRG state prediction'  [McCulloch2008], [Schollwöck2011, Sec. 10.1]

To speed up Lanczos search for ground state, construct initial guess for        from previous data: 

initial Ansatz QR-decomposition

use this to initialize Lanczos

Logic:   let        be followed by           , and        preceded by       

           to reverse arrows between      and      , use 

This leads to 'dramatic speedup' of iDMRG.
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DMRG-II.2

Problem: when exploiting quantum numbers, 1-site DMRG performs poorly, because it does not explore 

subspaces with different quantum numbers. An early remedy for this is 2-site DMRG, but that is 

computationally much more expensive than 1-site DMRG. Subsequent suggestions for 1-site DMRG with 

symmetries are 'density matrix perturbation' [White2005], the 'center matrix wave function formalism 

[McCulloch2007], and, most recently, 'subspace expansion' [Hubig2015], which performs best.

Minimize energy with constraint of 

fixed normalization, 1 site at a time:

Reminder of 1-site DMRG,

in site-canonical representation:

Local basis:

close 
zipper

Reminder of 2-site DMRG, 

in site-canonical representation:

Minimize energy two sites at a time:

Solve for 'eigenvector' with lowest eigenvalue, say            , then do SVD on it to move to next site:

Solve for 'eigenvector' with lowest eigenvalue,             , then do SVD and truncate (!) to move to next site:

Important: dimensions of           are fixed, hence truncation is neither needed nor possible!

with 

'strictly single-site DMRG (DMRG3S)'

SVD

SVD
truncate

Local basis:

2. Subspace expansion for 1-site DMRG
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Problem of single-site optimization: it is constrained to a variational space defined by outgoing state spaces

                     .  If the ranges of quantum numbers        and        for these spaces are too small to accurately

represent the ground state, single-site DMRG has no way to enlarge them. 

Example: 6-site chain of S=1/2 spins, exploiting Sz quantum numbers:

Then the corresponding two blocks are missing in both            and            :

[see SYM-I.3]

But in practice, we use truncated state spaces. Suppose                 , 

and that random initial state does not contain

Two-site optimization does not have this problem: the action of H on two sites enlarges bond dimension in

between, adding the full range of quantum numbers needed on that bond. If a certain quantum number was 

missing on that bond before the action of H, but appears afterwards with non-negligible weight, it will survive

after SVD and truncation. Hence: two-site optimization can add missing quantum numbers, if needed.

But this comes at a cost: effective two-site Hamiltonian has dimension

By contrast, effective one-site Hamiltonian has dimension 

Bond dimensions:

with 

sum over bond index                    matches blocks with same          :

spin conservation:

In general, the product                      has block matrix product structure, where
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Subspace expansion 

1-site scheme that can 'expand' the variational space to recover missing blocks!

Conceptual idea: if the variational space                        is too small, expand it to 

all MPS with specified bond dimensions 
            and quantum numbers

  explores more quantum numbers
(except if         is an exact eigenstate)

current approx. for ground state

Concretely: define and adjust 

1-site optimization of truncated            will never find a good ground state if the latter has  

non-negligible contributions from missing blocks. 

2-site optimization reinstates missing block: E.g.:

action of spin-flip term on sites 3 and 4 

can increases range of 

projector into local basis  

Crucial point:        enumerates all states possibly generated by action of H on sites             , hence its 

range can be larger than that of      in (17) for          , possibly including new quantum numbers!

dim(    ) = dim(    )   dim(    )

Truncated:

Suppose site      has been optimized by 1-site DMRG, yielding          , defining 'current ground state'  

[for an example, see (15)]

Thus, virtual state space on this bond has been 'expanded': 

shorthand

For 6-site chain discussed earlier: for each fixed     : 

'mixing coefficient'

  to further minimize the energy.
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dimensions: 

In (18), we identified coefficients tied to                         and to                 :      

Now we add the two MPS in (16), by yet again expanding virtual state space and block-multiplying their tensors:

dim(    ) =  dim(   ) + dim(    )   dim(    )

To deal with large dimension bond       , use SVD on                                and back to         (!!)

dimensions: 

For 6-site chain discussed earlier: for each fixed     : 

and

6-site 

example:

Insert zeros in blocks previously not present in 
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To deal with large-dimension bond       , use SVD on                                and truncate back to         (!!)

Left-normalized           is final result of optimization of site     ,  and             initializes optimization of site        .

Remark: [Hubig2015] choose                      [instead of (22b)], arguing that it only affects            , 

which will be updated anyway when optimizing site         via Lanczos ground state solver in next iteration.

But using (21b) speeds up convergence for that Lanczos solver [Weichselbaum (private communication)]. 

SVD truncate

Crucial point: as mentioned earlier,         may include larger range of quantum numbers than      .     

If these contribute significant weight to                 , then they will have significant weight in SVD of (27),

hence will survive the truncation in (27), and thus be present in           . 

In this way, subspace expansion succeeds in 'reinstating missing quantum numbers' (without ever needing 

to do Lanczos with huge effective 2-site Hamiltonian of 2-site DMRG!).

6-site example: if                carries significant weight, then SVD,

followed by trunction with dim(   ) = 4, will reinstate those blocks:

Summary of subspace expansion algorithm       'strictly single-site DMRG (DMRG3S)'

In site-canonical basis for site      , use 1-site DMRG to find optimized   1.

Left-to-right sweep:

with 

new current energy estimate

Expand subspace,2.

do SVD + truncation:

Obtain 'post-expansion' energy estimate3.

Back to 1. and repeat.

Right-to-left sweep is analogous, with 

Expand subspace,2.

do SVD + truncation:
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Obtain 'post-expansion' energy estimate3.

Choice of mixing coefficient    :

iterations

energy change from 1-site optimization,

usually < 0

energy change from truncation, 
can be either < 0 or > 0.

Behavior of energy changes depends on            :

If      is too small, one can get stuck in local minimum, i.e.

If      is too large, truncation destroys changes made by previous local optimization, and 

         Then reduce         for next iteration on next site.

If             is much smaller than           or even negative, then one can increase       for next iteration.             

In practice, start with            and aim for 

and change     by multiplying with some factor greater/smaller than 1 (rather than subtracting/adding).

After several DMRG sweeps back and forth through the chain, the 'correct' quantum numbers will typically 

have been found. So, one can eventually take               , returning to pure 1-site DMRG.

optimization 

truncation

optimization 

truncation

(for scheme of [Hubig2015], with          ) 

Remark: there may be better ways to choose     :  build the 2-dimensional Krylov space 

and choose       such that is the ground state of in this space.

This corresponds to the first step of a Lanczos iteration, cf. DMRG-I.2, Eqs. (6-11).

Orthogonalize: 

How can one estimate / control error during extrapolations with increasing bond dimension?  See [Hubig2018]. 

Then diagonalize , its lower-energy eigenvector yields optimal 

Computing          involves addition of two MPS, can be done as in (24,25) [no need for SVD + truncation 

here], to arrive at an MPS with same bond dimensions as          .

Then use that          to compute a new             , and from that compute 

as described in (24,25,27).  Explore whether this yields better convergence behavior!

Energy
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