2D Canonical Forms, Isometric PEPS CanF.1

1. Canonical form for bond in 2D tensor network [Evenbly2018]

For 1D MPS, there is a canonical form for a virtual bond:

o A
Schmidt decomposition into left and right parts, A S A
yielding diagonal bond matrix: A B
Method to obtain Schmidt decomposition: SVD - “‘, 5 ",=+ -
Schmidt decomposition also serves to 'fix gauge' on bond: (1)

bond matrix should be diagonal, with only positive diagonal entries, arranged from large to small.

Generic question for 2D tensor network: can a canonical form for bonds be defined?
The question is nontrivial due to presence of loops, so Schmidt decomposition does not apply.

Evenbly proposes a generic answer in terms of 'bond environment'. [Evenbly2018, Sec. II]
(a) Consider bond between tensors A and B, described by bond matrix &, AB
(b,c) Its 'bond environment', YA B , is 4-leg tensor obtained by deleting this bond (twice) from (1“1.}-)

(a)
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FIG. 1. (a) Quantum state |v) defined from a network of tensors
(| {A. B,C, D, E} with bond matrices o sitting between pairs of
L tensors. (b) Tensor network for (v |y/). (¢) The bond environment Y, 5

is defined by contracting (v |y) while leaving the index between A
and B (and their conjugates) open. (d)—(e) A change of gauge, which
leaves the state |y ) invariant, is enacted on the index between A and
B via matrices x and y together with their inverses. (f) Depiction the
new bond environment T 45 and associated bond matrix &, 5 from the
gauge change in (e).

(c)

Useful properties of bond environment:

E.1 Bond environment of an index is invariant under gauge changes on all other internal indices of network.
E.2 All bond environments of all indices are invariant under unitary transformations on external indices of

network (because external indices are contracted out when constructing Y ).

E.3 If bond is a 'bridge’, I:H»—(-:l , its bond environment factorizes:
¢

I—l‘_)_t j I_l l |_| |_|*->-L Jl Y ic \(L :s'
= )= R AT
|_|'<‘.( \,)—)-l’ | \‘)TH | 1 <., J ! &y 'L
{
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Gauge fixing [Evenbly2018, Sec. III]

Define left and right 'boundary matrices' by contracting 6*6 or § or"" onto Y from left or right:

(a) § \ . (b)j ’l, . (c) oc FIG. 2. (a)~(b) The left boundary matrix pp is fotmed from
® - E 3 J contracting a bond environment Y with (two copies of) the asso-
k. — & T _ ciated bond matrix o. (b) The right boundary matrix pg. (¢) The
Y| = (fu A = PR | . i e " L
1 . s . 4 = weighted trace gauge (WTG) is the choice of gauge that yields trivial
a 1 F] Pr| o = &5 =l =
; ., 1 St J environment matrices, p; oc [ and pp oc L.
{ v it
PR | .t ‘a
L 3
6 1— GR\S 5 . . o= . (s)

contract left index of 6 with matching index of & ¥ contract rlght index of 6 with matching index of & t

Index is in 'weighted trace gauge' (WTG) if both left and right boundary matrices are proportional to 4.

and bond matrix &~ itself is diagonal, with positive diagonal elements, arranged from large to small.

If bond is bridge index, so that bond environment factorizes, WTG implies

5 | | > l«-{ | | |l
Cilll)llﬁ(x{ | }“ﬁ\lllll;} "

which is reminiscent of MPS canonical form:
£ .« 1 3 - as; (@

How to transform into WTG: right/left-multiply by inverse of dominant left/right transfer operators

A

u (C)__>_ rvyf ) (a) Left transfer operator: [‘k (0'+€‘f ) = }kl-la
+
k‘ Lo = 'E L *E (c) SVD of dominantone: Lo = U, d, M-’
i Tw, gt , : t =
” (d ) (b) Right transfer operator: (\( 66 Bﬂk = Ak}k
— e po _~Up
L;» “ ‘ I (d) SVD of dominant one: Ko = U dg Ug
= Ak ki ‘Ro = dR:'
| J_‘ > ‘ A;u'l;q \1‘} (e) definition of modified bond matrix, and its SVD.
OaB Y a
d(e) ﬂ uL & il \/d_R o SVD v, & v; Writing (e) as _\,_>+<—«.; Hu—<— we identify
consider —g?—w%«_—é—o— —— = x and y as given by (f). By construction, they satisfy
(@ oo ol = :
x v Jd, uf y _ Ur dg vg X'x = (MLMLUL)(U S Uy) = Uty =Lo

o= 0—8—C—

‘33 = (uy A ) s Ja, u ) = dpdeily = %o

These properties ensure that Y and 5» satlsfy WTG,
as demonstrated in (h) = (a) ot and (i) = ~.f-(b)

X JAB y EAB
—_— YAB —~
)J— 5+ 3 = v+

= —e—
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2. Full environment truncation (FET) [Evenbly2018, Sec. V] CanF.2

Goal: replace [4.}:7 , with bond dimension X on bond between A and B,

by (?7 , with bond dimension ")\'( <X on that bond, while keeping their overlap maximal.
- u Gap vt
Strategy: replace bond matrix ___¢?2 by oG (1)
X %X %K
and chose isometries, 1/("0" , with IA{'(A =1, U’*U’ =1 , ()

such that they maximize the cost function F(y, ) = < "?l 4 X< | {F)
IERIS AL 2)

=1

®

(d
(d,e,f): this cost function can be expressed

through the bond enviroment, )’ . Hence the
name: 'full environment trunctation' (FET).

FIG. 5. (a)—(c) The index connecting tensors A and B is truncated
to smaller dimension. ¥ < y. by replacing 045 with the product
(&4 v, where i, v are isometries and G, is a § x ¥ matrix. (d)—(f)
The overlaps (v |vr), (W), (¥|vr) of the states from (a)—(b), which
have been expressed in terms of the bond environment 1.

R
%
P SVD U Oap vT
Initialize optimization protocol by doing SVD on bond matrix: i = oG- )
X ¢ %* %
Then iteratively compute (b)-(g).
(a) (3) FIG. 11. Diagrams relating to the full environment truncation

i N ] ] (FET) algorithm. (a) The fidelity £ between an initial and a truncated
v é_P = L v state expressed in terms of a bond environment Y. see Fig. 5.
F o Ea 9.4 bt e (r+ (b)—(d) Definitions of tensors R, P, and B. (e) The fidelity F can
u& el ) Y L be expressed as a generalized eigenvalue problem in R as F =

(RPTPRY)/(RBRT). (f) The fidelity is maximized with the choice
R=PB . (g) Updated tensor ', ', and v" are obtained from the

SVD of the product u R.
(b) (b) Initialize K = b‘u—‘L using SVD from (4).
_
RI.= 5 C.g— @ = i Then seek to solve for optimal R while u is held fixed.
-
u

(c-d) Define tensors P, B, such that cost function
takes the form

(e 4 i}
E < RAK

f — =, with A=PP
(e) (f) s g
Bm -8~
R L» g :_\ (f) Since A is simply outer product of two vectors,
@ e RY " ," optimal choice for R is known analytically: R S Pg—l

1

(g) Do SVDon 1 R to obtain updated u', 5, v
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Next, update the product / = ( wes) in similar way, with " held fixed.

Iterate these two steps until convergence is reached (typically 'less than 20 iterations are needed).

]

Benchmark results for FET

’ FIG. 13. Relative error in the free energy per site of the classical
—+TRG | Ising model on a 2'®x2' lattice of spins at critical temperature,
“=TRG+env | comparing (i) tensor renormalization group [32] (TRG). (ii) tensor
TG+ FErf renormalization group with enlarged environment [36] (TRG 4+ env)

and (ii1) tensor renormalization group that includes 4l environment
truncations (TRG + FET).

-
o
N

i

10
SRG of [Zhao2010]

FET does better than TRG or SRG.

Evenbly claims (without showing data) that performance

relative error in the free energy

of FET is comparable to Gilt.

Ry
o

-
o

10 15 20 25 30 35 40
bond dimension, X

Gilt is 'smarter' than FET, because Gilt does more than optimize the overlap (’\Ff/h})

Instead, Gilt eliminates all information flowing out from bond that cannot traverse environment and
reach outside world. Gilt and FET actually use same bond environment, but treat its indices differently:

By
I/

&
I
Il
1H
=

Gilt: T —

Gilt uses SVD between indices EE
defining upper and lower gap:

"

FET: \(

FET successively optimizes 6 bond, then c bond, iteratively until convergence.
But it never makes a 'horizontal SVD' through the middle of Y, which governs how information flows from
inside to outside. For this reason, FET is less efficient than Gilt.
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3. Isometric PEPS: Moses move [Zaletel2020] CanF.3

Motivation
Canonical forms for 1D MPS are very useful: since constituents are isometries, contractions are trivial:

Standard tool for obtaining canonical form: SVD q B C . .—.D ’j = ( { ) ‘G_)

Can we similarly express PEPS state purely through isometries to obtain an 'isometric PEPS' ? YES!

FIG. 1. Schematic representation of the canonical form in 1D
and 2D. (a) Left and right isometries are represented by arrows
whose orientation indicates whether ATA = BB" = 1. We view
the isometry as an RG-like procedure from the large Hilbert space
(incoming arrows) to the smaller one (outgoing arrows). In the
case of higher-rank tensors, the contraction ATA = 1 is always
over all the incoming arrows. (b) A 1D MPS can be brought into a
mixed canonical form with orthogonality center A. Note that each
dangling physical index 1mplicitly has an incoming arrow.
(c) Expectation values of local operators can be directly obtained
from A. (d) 2D canonical form with “orthogonality hyper-
surfaces” A (column and row _highlighted in red). The orthogon-
ality center 4 is marked by a red dot. In blue we indicate an
example of a subregion with only outgoing arrows, whose
boundary map is consequently an isometry.

MPS2: all tensors except those in 'orthogonality enter' /\ (red row and column) are isometries:

A B
= =& .Y - ,
= 1 ) —-‘JE :H 1 €))

A st
/\ is wave function of the system in an orthonormal basis, because its exterior is an
isometry from the physical bonds to the incoming virtual bonds.

a A
This allows local expectation values to be computed as (-q,[ ol 1{») = (/\\ o \/\) (7
since tensors A, B outside of orthogonality center /\ contract to 1 by isometry condition (1).

Interesting open question: how does variational power of isometric PEPS differ from general PEPS?
One restriction is: many of its correlations decay exponentially, because any two-point function along
orthogonality center can be reduced to that of the MPS A , whose correlations decay exponentially.

e A+1 [} Loy
Shifting orthogonality center: Moses move (MM) /\ ) = (“ /\ B = (3)

(a) A¢

A FIG. 2. The Moses move. (a) The orthogonality hypersurface
A’ is split into the product of a left isometry A° and a zero-
column state A with no physical indices. The unzipping is
performed by successively applying the splitting procedure
shown in panel (b). The legs of the center site 4 are grouped
into a tripartite state |o/p¥) which is “split” into three tensors in
two steps: first find | ¥) ~ U U'[oc e, pex) for an initial guess
of the isometry ﬁ) and unitary U which minimizes the entangle-
ment across the vertical bond highlighted in red; second set
a =1U" and split [MFL,FR’M in two via SVD. The resulting «a
comprise the tensors in A, and the choice of U will produce a A
with minimal vertical entanglement.

At central cite (red dot), three 'regions' meet:
top ( =), left/bottom ( { ), bottom/right ( ¥ ).
We need to split three-partite entanglement

‘SS\‘ - 3 IBK C X\ into two-partite entanglement,

top/left (o, ‘L.) vs. bottom-right ( 'Sg )
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Needed: the optimal isometry B which 'splits' the composite index /s into two sub-indices F\L Pr

Frpe e FEo1 - .

while minimizing 5,( F’-/PK\(* , the entanglement entropy between top/Ieft and bottom/right.

s 1 )
Choice of B: ~ 4 by
SvD s° u" ,X % szgt::étuzg i Bﬂu_';&_f'-' - re;:}%pe *A
W?}’* " p@7(]§1g f,gj}ﬂ }»{k "
: dYZ d¥ truncate B ]Sz s F ®
(K\-—-——y—-—l Xl % ‘gz
X
N X, 4 %
W|Erz1)d|sentangler U chosen to minimize " u . g 3 A
S“FL ped (using projective truncation f"' B ®n SVD i L XL ©
methods of Evenbly & Vidal). Iy T fout
%‘L t T 3 F& K
%X x
K v Cx

General question: find U which splits given system into two minimally entangled subsystems:

) = 1150, 4 %6 Y — = UIp = DAY PR

1

/ % t
f d/" = = ﬁ ] S——
3X % 4p' LY $ Oy 5 BIpR Y ®
e
B P = -
Tool: construct reduced density matrix, ?,_ = Ter "‘}X;&"\ (@)

and choose U such that it minimizes von Neumann (or Shannon) entropy:

n N ~ ~
= - o
) SR T fodoge fo ®
( .
Sz isalways = o .
is maximal if all weights are equal, =2 %2 is'maximally entangled'
is minimal if one weight = 1, all others zero, => |7}» is 'product state' (ro)
- 3
4 =1
a4 ~ L =
fos[Jf =2 .3 0)
= §_
=

Practical problem: von Neumann entropy is a highly non-linear function of reduced density matrix,

there is no straightforward way to minimize it. Alternative: consider Rényi entropies!
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Rényi entropy [Rényil961] : S(u)(f\) = T_a '(037' [Trjc ] OLAEw (e

Rényi entropy has properties similar to the von Neumann entropy. It reduces to the latter for o — [ :

o . b
Proof: S(L’z(f) = T-x /{"31-[1—"'([’ f )] = -w ’{“UZ[T" (f ?,GL ' >} -1
ad

—_ /({T [Tf C I+ (K—-\)/(A«ja + &((“-')1)])]

(

Il

[useTrJorl] — z[ I+ (-) T'rf'&"'ﬁ + @((x—u)z)]
t Sfft(}f) ‘Tf[fl 1031_}01 = [we used: L;S 'C"‘X RAETD z3 Y ]J

]

Properties (10) hold also for Rényi entropies, hence they also serve as useful entanglement measures.

To minimize L/R entanglement, we may hence minimize (“) ( ,_) forsome « ,eg. K=7
N
L . . . (z.) T z
Minimization of 'second Rényi entropy', 5, /¢ ( j’c = - Lo f([io) ) ¢ W)
[Hauschild2018, Sec.III.A] |
R ~ (18)
We seek a unitary 'disentangler' U, 1p) = Ulyy = ll:\ =
=
with constraint u*u = L(MT= 1
. N (‘t) . . - ~ = T. ~2
which minimizes (])L) , i.e. which maximizes Zz({:) = TﬁL (15)

4 =

with 8 = ry = *5— g
fr fo 7 & % g%l (14)

=

This constrained nonlinear optimization problem can not be solved directly.

But it can be solved iteratively via linearization:  [Evenbly2009, Sec. IV], [Evenbly2017, Sec. III], TNR.3

Define environment of U via Z. = tTw [ &@ U ] ()
e
Do SVD on environment of " , L= UsStw (1)
I A A .
and update U by the prescription Un = v t/(+ : (19)
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— £
Zz(ﬁ) = {1 Z || with G - o
S
+J
U= U
AA o~ update A ad oAl Ty
v < fTr{Q()OZ{] {’Tr[ U’-} — {—T,-Iusu-'} %}—Hrh] (20)
ul
. . (‘ A A
Iterate until convergence of singular value spectrum of !y . Iy V)= U = = (@)
Final U is desired disentangler. Use it in (6) to achieve Moses move, ~ { kS
N )
A
be %o pr ¥

A o

with A, B, C given by:

FLUNQ’tu svohn“
PvDﬂi % (A I v



4, Isometric PEPS: Applications [Zaletel2020] CanF.3

TEBD? algorithm (square lattice, nearest neighbors)

Lx Ly B -tH H
- f -
—_ [
H= Z W+ 2 H, e"s Te Te (
c=1 ,&P? 1= /Q_/\ / P c
acts on columri ¢ acts on row r
Jda
@ (b) g x FIG. 4. The TEBD? algorithm: (a) Trotterization of e~ ™Hr/e
—drHyond | i =l T L into a product of two-site terms acting on a single row/column
‘,e of an orthogonality center. The gates are applied on the up
Wy Y. [ Y Y. Y. Y. Y sweep, and the MM on the down sweep. (b) To complete
R \ D At Et\ y Y yyEa Ome time step, the 1D update is applied to all row/columns
& L, & © by sequentially shifting the orthogonality center A" using
e GTHe=1 p—dTHe=s e~ drHr=1 the MM.

1,0
Begin with orthogonality center (OC) a lower left corner, 'A .

-THG=\

|
Up-sweep along first row: apply e to column A by calling standard 1D TEBD.

Z, |
Down-sweep along first row: Moses move to shift OC to the right by one column, to A
L X }\[ ¥, {

to rows, and MM to shift OC upwards, until it reaches

Repeat up-down sweeps until reaching column /\ on the right, with OC at

He 9\“‘1 Lj

-T
Then successively apply €

11
Repeat to bring OC ’>\ counterclockwise around the four corners back to A’ to complete time step.

(c) L=6 L=8 L=10
10-2 (c) Error densities of the energy of the transverse
/ field Ising model with ¢ = 3.5 for different system sizes and
. ' maximal bond dimensions x as function of the Trotter step
3 107 1 size dr.
< J ocdr!
10-4 S / fe | = x=2 . d U]
T SN —o— x=4 Trotter error increases as (AT
1N —e— x=6 . LI
1075 . T truncation error due to MM decreases as (d7) since larger
1072 1071 1072 1071 10-2 10-1 . )
e e . time steps mean less MM moves.

MPS to MPS? conversion: entanglement reshuffling

4 . : :L
A2 A3Lle Al ¥ F’ Az Lx Ar A A3 Y

AI:L,W Al

a)

7 7 Y

2:Ly——p Al
A* o A N
7 I 717

N N

1 >

/ /

FIG. 3. The MPS to MPS*-algorithm: (a) The MPS AL«
for an L, x L, strip is fed into the MM by treating the legs of
the first column as the left ancilla and the remaining columns
as the right ancilla to obtain A*f* = A'A%%=_ The renor-
malized wavefunction A%T= is then reshaped by viewing the
legs of the second column as physical, and the remaining as

/

0.3

- 0.2

St

MM

iter

- 0.1

== MM

Si(Ly /2)

— D

1 —— 3

= = arealaw

b

= = arealaw+c
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right-ancilla. Applying the MM again, we can repeat to ob-
tain a canonical TNS. (b) Entanglement entropy S; for the
sequence of orthogonality centers (highlighted in pink) after
£ iterations. y runs from bottom right, to top right, to top
left. (c) S¢ for a cut at y ~ Ly /2, compared agains{ the bulk
area law determined from DMRG. Y = zp

¥



- - "~ - W = s lert. (C) S¢ IOr a cut at Y ~ L. /2, compared agamﬁz the bulk

Y ¢ area law determined from DMRG. + = 3 = z0
12 L ¥
(a) Start with 'fat' MPS /\ , Where each 'site' contains the [,{ spins of the corresponding row.
{-Cy L favly
Use MM to iteratively 'peal off' columns of the wavefunction, /\ = A /\ , 2 ®
Ly -
producing an MPS2, y >
(b) Entanglement entropy S k(lj) for cuts across /\ A =7
(cut runs at fixed ‘3 ), after iteration step g, A P Sy
/
. : . . L:Ly :
In 'right-region' (lj < Lj ) S}L decreases with { , since /| becomes 'thinner'.
(c) After initial delay, S, reflects area law: SL(lj = LS/L) ~ S I’JA( ~ sllx-2) ®

Thus pealing off an isometric column from /\ removes from it a 'unit' S of horizontal entanglement.

Initial delay is expected, because any two vertically-entangled degrees of freedom will individually
have some entanglement with their horizontal neighbors. The isometries A can fully remove them
from right-region of /\ only after their entire support is to the left of /\ .

The entanglement removed from right-region of /\ by the isometries lq is redistributed to the
top-region of A , Where it is encoded as horizontal entanglement. Its magnitude, given by S glg)
for a vertical cut through the top-region of /\ , is of order of the entanglement 'unit' $

For [ = Lx (=(5, smoothly matches up between right/top regions (despite anisotropic algorithm!)
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