
CanF.1

Generic question for 2D tensor network: can a canonical form for bonds be defined?

The question is nontrivial due to presence of loops, so Schmidt decomposition does not apply.

Canonical form for bond in 2D tensor network1.

For 1D MPS, there is a canonical form for a virtual bond: 

Schmidt decomposition into left and right parts, 

yielding diagonal bond matrix:

Method to obtain Schmidt decomposition: SVD

[Evenbly2018]

Evenbly proposes a generic answer in terms of 'bond environment'.   [Evenbly2018, Sec. II]

(a) Consider bond between tensors A and B, described by bond matrix 

(b,c) Its 'bond environment',           , is 4-leg tensor obtained by deleting this bond (twice) from

Useful properties of bond environment:

E.1 Bond environment of an index is invariant under gauge changes on all other internal indices of network.

E.2 All bond environments of all indices are invariant under unitary transformations on external indices of 

network (because external indices are contracted out when constructing        ).

E.3 If bond is a 'bridge',                                              , its bond environment factorizes:

gauge change:

Schmidt decomposition also serves to 'fix gauge' on bond: 

bond matrix should be diagonal, with only positive diagonal entries, arranged from large to small. 

2D Canonical Forms, Isometric PEPS

   Page 1    



Gauge fixing

Define left and right 'boundary matrices' by contracting or           onto    from left or right:

contract left index of      with matching index of  contract right index of      with matching index of  

Index is in 'weighted trace gauge' (WTG) if both left and right boundary matrices are proportional to 

and bond matrix itself is diagonal, with positive diagonal elements, arranged from large to small. 

If bond is bridge index, so that bond environment factorizes, WTG implies

which is reminiscent of MPS canonical form: 

How to transform into WTG:  right/left-multiply by inverse of dominant left/right transfer operators

(a) Left transfer operator:

(c) SVD of dominant one: 

(b) Right transfer operator:

(d) SVD of dominant one: 

(e) definition of modified bond matrix, and its SVD.

     Writing (e) as 

These properties ensure  that      and      satisfy WTG,

as demonstrated in (h) = (a)       and (i) =     (b).

SVD , we identify

x and y as given by (f).  By construction, they satisfy 

[Evenbly2018, Sec. III]

consider
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CanF.2[Evenbly2018, Sec. V]

Goal: replace            , with bond dimension        on bond between A and B,

by           , with bond dimension                     on that bond, while keeping their overlap maximal.

Strategy: replace bond matrix                         by   

and chose isometries,                     ,  with 

(d,e,f): this cost function can be expressed

through the bond enviroment,          Hence the 

name: 'full environment trunctation' (FET).

such that they maximize the cost function

Initialize optimization protocol by doing SVD on bond matrix: 

Then iteratively compute (b)-(g).

(b) Initialize                          using SVD from (4).

(c-d) Define tensors P, B, such that cost function 

takes the form

with 

Then seek to solve for optimal R while u is held fixed.

(f) Since A is simply outer product of two vectors,

optimal choice for R is known analytically: 

(g) Do SVD on           to obtain updated 

SVD

2. Full environment truncation (FET)
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Next, update the product                              in similar way, with            held fixed. 

Iterate these two steps until convergence is reached (typically 'less than 20 iterations are needed). 

Benchmark results for FET

SRG of [Zhao2010]

FET does better than TRG or SRG.

Evenbly claims (without showing data) that performance 

of FET is comparable to Gilt.

Gilt is 'smarter'  than FET, because Gilt does more than optimize the overlap 

Instead, Gilt eliminates all information flowing out from bond that cannot traverse environment and 

reach outside world. Gilt and FET actually use same bond environment, but treat its indices differently:

Gilt:

FET: 

Gilt uses SVD between indices
defining upper and lower gap:

FET successively optimizes        bond, then      bond, iteratively until convergence.

But it never makes a 'horizontal SVD' through the middle of      , which governs how information flows from 

inside to outside. For this reason, FET is less efficient than Gilt.

   Page 4    



CanF.3

Canonical forms for 1D MPS are very useful: since constituents are isometries,  contractions are trivial:

Standard tool for obtaining canonical form: SVD

Can we similarly express PEPS state purely through isometries to obtain an  'isometric PEPS' ?

[Zaletel2020]

MPS2:  all tensors except those in 'orthogonality enter'          (red row and column) are isometries:

This allows local expectation values to be computed as 

since tensors A, B outside of orthogonality center         contract to      by isometry condition (1).

Interesting open question: how does variational power of isometric PEPS differ from general PEPS?

One restriction is: many of its correlations decay exponentially, because any two-point function along 

orthogonality center can be reduced to that of the MPS        , whose correlations decay exponentially.

is wave function of the system in an orthonormal basis, because its exterior is an

isometry from the physical bonds to the incoming virtual bonds.

Shifting orthogonality center: Moses move (MM)

YES!

At central cite (red dot), three 'regions' meet:
top (    ), left/bottom (     ), bottom/right  (    ).
We need to split three-partite entanglement 
into two-partite entanglement, 
top/left (         ) vs. bottom-right (           ).

Motivation

3. Isometric PEPS: Moses move
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Needed: the optimal isometry B                                         which 'splits' the composite index    into two sub-indices 

Choice of B:
insert unitary 
disentanglersSVD

                  ,  the entanglement entropy between top/left and bottom/right.

reshape
SVD

with

while minimizing

with disentangler U chosen to minimize

                 (using projective truncation

methods of Evenbly & Vidal). 

dim:

SVD

truncate

General question: find U which splits given system into two minimally entangled subsystems:

is maximal if all weights are equal,                                  is 'maximally entangled'

is minimal if one weight = 1, all others zero,                    is 'product state'

is always 

Tool: construct reduced density matrix,

Practical problem: von Neumann entropy is a highly non-linear function of reduced density matrix, 

there is no straightforward way to minimize it. Alternative: consider Rényi entropies!

and choose U such that it minimizes  von Neumann (or Shannon) entropy:
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Rényi entropy  

Rényi entropy has properties similar to the von Neumann entropy. It reduces to the latter for              : 

Proof: 

[use               ]

[we used: 

Properties (10) hold also for Rényi entropies, hence they also serve as useful entanglement measures. 

To minimize L/R entanglement, we may hence minimize                               for some           , e.g. 

[Rényi1961]

Minimization of 'second Rényi entropy',               

which minimizes                            ,  i.e. which maximizes   

We seek a unitary 'disentangler' U, 

with constraint 

[Hauschild2018, Sec.III.A]

with  

This constrained nonlinear optimization problem can not be solved directly. 

But it can be solved iteratively via linearization:  

Define environment of            via

Do SVD on environment of      , 

and update U by the prescription 

[Evenbly2009, Sec. IV], [Evenbly2017, Sec. III],  TNR.3
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update

with SVD

Iterate until convergence of singular value spectrum of        . 

Final U is desired disentangler. Use it in (6) to achieve Moses move, 

SVD

with A, B, C given by:
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CanF.3[Zaletel2020]

TEBD2 algorithm (square lattice, nearest neighbors)

acts on column c acts on row r

Up-sweep along first row: apply to column             by calling standard 1D TEBD. 

Down-sweep along first row: Moses move to shift OC to the right by one column, to 

Repeat up-down sweeps until reaching column               on the right, with OC at 

Then successively apply 

Begin with orthogonality center (OC) a lower left corner,           .

to rows, and MM to shift OC upwards, until it reaches 

Repeat to bring OC         counterclockwise around the four corners back to             to complete time step.

Trotter error increases as 

truncation error due to MM decreases as         , since larger 
time steps mean less MM moves. 

MPS to MPS2 conversion: entanglement reshuffling

4. Isometric PEPS: Applications
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(a) Start with 'fat' MPS             , where each 'site' contains the          spins of the corresponding row. 

Use MM to iteratively 'peal off' columns of the wavefunction, , 

producing an MPS2.

(b) Entanglement entropy for cuts across  

(cut runs at fixed      ), after iteration step    .

In 'right-region'  (             ),          decreases with       , since                   becomes 'thinner'.

(c) After initial delay,       reflects area law: 

Thus pealing off an isometric column from       removes from it a 'unit'     of horizontal entanglement.

Initial delay is expected, because any two vertically-entangled degrees of freedom will individually 

have some entanglement with their horizontal neighbors. The isometries      can fully remove them 

from right-region of        only after their entire support is to the left of       .

The entanglement removed from right-region of       by the isometries          is redistributed to the 

top-region of      , where it is encoded as horizontal entanglement. Its magnitude, given by

for a vertical cut through the top-region of       , is of order of the entanglement 'unit'      . 

For                  smoothly matches up between right/top regions (despite anisotropic algorithm!)
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