MPS-III: Translationally invariant MPS [Schollwbck2011, Sec. 4.2.2] MPS-III.1

Consider translationally invariant MPS, e.g. infinite system, or length-N chain with periodic boundary
conditions. Then all tensors defining the MPS are identical: H [e] = F] forall £ .

Goal: compute matrix elements and correlation functions for such a system.

1. Transfer matrix

Consider length-N chain with periodic boundary conditions (and A's not necessarily all equal):
Ve indicates trace
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We defined the 'transfer matrix' (with collective indices chosen to reflect arrows on effective vertex)
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Assume all & -tensors are identical, then the same is true for all T'—matrices. Hence

{y(y) = T‘f(TN\ = Z({\])” A2, (‘L,)N &
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where ‘l:\‘ are the eigenvalues of the transfer matrix, and {:‘ is the largest one of these.
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where ‘t\‘ are the eigenvalues of the transfer matrix, and l:‘ is the largest one of these.

Assume now that @ -tensor is left-normalized (analogous discussion holds if it is right-normalized).

. . . (MPS-1.1.22)

Then we know that the MPS is normalized to unity: | = YY) )
(MPS-1V.1.8) implies for largest eigenvalue of transfer matrix: ( t u)” =1 = k.= (. (2)
Hence, all eigenvalues of transfer matrix satisfy \'t ‘ 6 £ |

eigenvector label: j =1 (3)
components of eigenvector
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'vector in transfer space' = 'matrix in original space'
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Correlation functions

5,
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cyclic invariance of trace
Let \/J , { S be left eigenvectors, eigenvalues of transfer matrix: \/J T = -}: . \/J
J

[ or explicitly, with matrix indices: (V“ >a T b = é.) (\/\‘ ) b ]

Transform to eigenbasis of transfer matrix:
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2. AKLT Model [Affleck1988], [Schollwdck2011, Sec. 4.1.5], [Tu2008] MPS-III.2

(thanks to Hong-Hao Tu for notes!)

General remarks

* AKLT model was proposed by Affleck, Kennedy, Lieb, Tasaki in 1988.

« Previously, Haldane had predicted that S=1 Heisenberg spin chain has finite excitation gap
above a unique ground state, i.e. only 'massive' excitations [Haldane1983a], [Haldane1983b].

» AKLT then constructed the first solvable, isotropic, S=1 spin chain model that exhibits a
'Haldane gap'.

» Ground state of AKLT model is an MPS of lowest non-trivial bond dimension, D=2.

« Correlation functions decay exponentially - the correlation length can be computed analytically.

Haldane phase for S=1 spin chains f ‘% .Lj 7 ¥ /.1
] z N
S=1
Consider bilinear-biquadratic (BB) Heisenberg model for 1D chain of spin S=1:
N—~( R R 2
H@,& = Z Sl S,?-H + /5(51 ‘ S[H 3 (l\
={
Phase diagram:
pure
integrable point Heisenberg  AKLT integrable point

Y 2 2 ‘(1 g
S—— o \}3 1> ~—

dimerized phase ( — , gapless phase
gapped Haldane phase: ﬁ e ("‘/’)

(includes Heisenberg point and AKLT point)

Main idea of AKLT model: Hager = H 8% (F =1 ) ®
is built from projectors mapping spins on neighboring sites to total spin =~ ;62 = L.
Ground state satsifies  H AKLT ‘ ﬁ 7 = 9 . Toachieve this, ground state is constructed

in such a manner that spins on neighboring sites can only be coupled to Sfoe“ = 0 or |

To this end, the spin-1 on each site is constructed from two auxiliary spin-1/2 degrees of freedom;
One spin-1/2 each from neighboring sites is coupled to spin 0; this projects out the S=2 sector in

the direct-product space of neighboring sites, ensuring that H ALLT annihilates ground state.
traditional depiction: MPS depiction: spin-1/2's live on bonds
d=o =
—A— ,——2«—0‘ S=o $=0° (3)
®% t® " t®@t T
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Construction of AKLT Hamiltonian

Direct product space of spin 1 with spin 1 contains direct sum of spin 0, 1, 2:

Lol =Aessx, — W

Projector of X, ® ﬂ: onto ﬂs (with S =0 1 2)

(s) (s) 12 2 - =\l :
P:,z. = P,,2 (sl .5, )= ¢ 10 (S. t SL) - Sl(slfl) (s
g T1 S'#s
sites 1,2 normalization factor  yields zero when
total spin = g’

: - =\ et} - = =2 = =
Using (S‘,-u—Sz) = S 4255, +S, = 295 4 ¥ , we find for spin-2 projector: ()
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- ¢ (43R £ 255 e o

()
Normalization is fixed by demanding that f()('.,_ must yield [ when acting on spin-2 subspace:

(2)
| = 1

e

C [Z(ZH) -0 ]l 2zt - l(uu)] )

< *_‘S'z)l: 2lesr)
=

i

A
C b-uy = C= 24 (12

(2 Ve | - @, . »
ﬂ,t = '{,’(S(-SA 7 5S4z = 'Pl'l(ﬁ(/ S,) = projector on spin-2 subspace (”)

AKLT Hamiltonian is sum over spin-2 projectors for all neighboring pairs of spins.

)

_ — - Qt‘
Hacer = % ﬂﬁ“(se/ Sps.)
= -
For a finite chain of N sites, use periodic boundary conditions, i.e. identify 9 =35, .
L+N A

Each term is a projector, hence has only non-negative eigenvalues. Hence same is true for HA ke -

=y A state satisfying HAKLT t"fb = 0(1[) = o must be a ground state!

Page 5



3. AKLT ground state

MPS-III.3
S=o S=o
. —— S=o §=0°
Z®% z® "2 1ot ‘ T T
Zz 2 z z 2 2
S=( s=1| 9= 5=\ 5=t( S!=|

On every site, represent spin 1 as symmetric combination of two auxiliary spin-1/2 degrees of freedom:
42 = 1ty

IS=Le) = (e = { loY (10910 « 1191eY)
(-1 = LLSULY

On-site projector that maps ﬁ 71.® % I,

[}

Co= [41yG I+ 1005 (CTICH] « CUICt]) + [-OKIKY]

Use such a projector on every site e : % B, %pu By,
A Sy
. ﬂ | <R, (e
= o A
C‘[C] | R>f C % B £< thp fo +€ 1
S,
3 211
o
with t = A" o\ °_ 4 (o I \ = ) & — Clebsch-Gordan
C ool , C =& i{'o ! i/ Coefficients
® =# =1 “Ep for coupling

@t = |

Haldane: 'neighbors shake hands'
Now construct nearest-neighbor 'valence bonds' built from auxiliary spin-1/2 states:

vy, = \gspﬁiub,?%\/’"““‘ : ¢E(\¢7‘u>m»lwﬂlt>zﬂ) _%i“_.“_‘i‘ -

A1 ( site £ site €41
V=5 (2, o ]

I\-( o

m

Haldane: 'each site hand-shakes with its neighbors'
AKLT ground state = (direct product of spin-1 projectors) acting on (direct product of valence bonds):

Re-i v Xy Be v g1 pte
[6) = T Cm TFN? = c
@¢ é,
L £-\ L sy
Why is this a ground state?
Coupling two auxiliary spin-1/2 to total spin 0 (valence bond) oD ‘/@/Z
eliminates the spin-2 sector in direct product space of two spin-1, ,___.3__,
[
hence spin-2 projector in HAK LT Yields zero when acting on this. 2 ® 3 ? £ ® 4
(Will be checked explicitly below.) ?’
{
|
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AKLT ground state is an MPS!

2 Tetgy Lg-c B oy B oy B Xeae
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~o Lo\ (o1 L (—( o )
6p= © L = fz((o) i —(o) = t\o |
. =1 - (00 )\ L [O _ & ( © o )
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Not normalized: B, 5 ° = "i(: ,o‘(ol;) + 2&(‘, l)(o «\ + —i(“ o){ oo) =7 1
+€ 6 -6
Define right-normalized tensors, satisfying B 8% = | B = ,‘g. B

41 z°’> O_L*W) ~  (Z(°v
S =E(oo , B = fg(o‘ 3 :(}7(~‘o>

Remark: we could also have grouped B and C in opposite order, defining

Ghade, gt o pro g fe _ Bepgue, b

pr T XQ B ;62

+ -
L This leads to left-normalized tensors, with ﬂ =1 = R =t , A v = 8%

B B
() T = <
Exercise: verify that the projector Pf. e ( 51' Se,.,\ 16‘ 46
) 2)
from (MPS-1V.4) yields zero when acting on sites I( lH of \63 4 ’Pz'hl
6-‘ a."l

Hint: use spin-1 representation for (3} . 3‘( . 13 7o

c'e! =

Boundary conditions

For periodic boundary conditions, Hamiltonian includes projector L@_@_@_@_@_)
connecting sites 1 and N. Then ground state is unique.

For open boundary conditions, there are 'left-over spin-1/2' degrees of

freedom at both ends of chain. Ground state is four-fold degenerate. b‘@'@‘@'@
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4. Transfer operator and string order parameter

MPS-IIL.4

(arrow directions are opposite to those of section MPS-V.1)
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Exercise

(@) Compute the eigenvalues and eigenvectors of |

22 ~le-elis :
(b) Show that C Lot e » With £ = A3

Remark: since the correlation length is finite, the model is gapped!
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String order parameter

AKLT ground state: lj) = ‘3“7 T{[Eo'. 5"',.. B‘u] with % é {H, D, — | 3

+1 z + o -t __x -
3 = I T , B =T R = 3 T
_+,‘(°l) - _L(°° r_L(le
with Pauli matrices (L = 2\lo o T =L5rlio ) T = zle -|)
d
N note that Btl %" B° &i‘ _ b for the Pauli matrices, the operation
ow, note tha .- = 'raise, do nothing, raise', yields zero
—_—
string of '@0

Thus, all 'allowed configurations' (having non-zero coefficients) in AKLT ground state have the
property that every t ( is followed by stringof © ,then + (.

Allowed: 6,5 = ... looo -tolooon-t100 —|
Not allowed: !0:;,) = .. looo ( O | or co~lo-[llo
= = = k—

'String order parameter' detects this property:

-1 . ,t
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Exercise:

Show that the ground state expectation value of string order parameter is non-zero:

lin v < «st )y = -+
byt 3 g 1

N e
Hint: first compute | , iS4

Intuitive explanation why string order parameter is nonzero:

|3> |v> Y%
£ ?*
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1§) = éﬂlv”)l—]—“
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" ~t T2 S(al ,?
C;e‘:) = Z? \L‘. AN S%e] e;‘r e=4r Le 3 (') )

For the AKLT ground state, there are six types of configurations; four of them give -1, the other two give 0:

Example configuration {3l S i?d l6) (?LS?;‘-] l#) &) %—;&f—i‘ﬂ 1) <) S;e] CCI%'SHI S;,] P
tHloo-ls [0-00 I ) +1 -1 G2 () = =1
“looto-tp 101 - = + 1 (= (- - (~1) = ~t
00D~ 01 D100 -I F - | o (N (=1) -1 - -
~loolo-1p1o-11 -1 1 o (=) (+1) - { = —
210l 10 -10] o 6
Il 0-Ipti1-loo @ © o
CSQ:;_\& = (-0 r’(%\ ('Zg\ = 7 %

probability to get 1 or -1 but not 0 at site ¢

!
probability to get 1 or -1 but not 0 at site ¢
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