DMRG-III.1

1. Time-dependent DMRG (tDMRG) [Daley2004], [White2004]

Invented 2004 by Daley, Kollath, Schollwdck, Vidal, and independently by White, Feiguin.

Goal: to compute (@(t)) = e -cHi (%9 Q)

Time-evolution operator for nearest-neighbor interactions (cf. iITEBD.1)
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[Schollwdck2011, Sec. 7.1-7.3]
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Construct MPO representations for (/{

Time-evolution protocol
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(iii) Compress: either 'variationally' (global) or 'bond by bond' (local)
A

Variational compression: First apply full MPO for l/{,> to entire chain. Then variationally minimize
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Variational compression: First apply full MPO for I/{‘> to entire chain. Then variationally minimize

“ | ( {:ft)) (’l{"w) [l ¢s) . This yields optimal (in variational sense)
Jf”i” A way to compress h}* ) to |7 )
bond dimension 1) .d tadl (sl

with given resources.
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Explicitly: ﬂ(fn [( q,: sl l?w 3 - A <’-['W“[’:r,::ld>1 =o )
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~ ;\ is fixed by normalization
[ 4R = A A4 condition: Rt.ﬂc =1 13)
Sweep back and forth, until overlap < WW \‘tha_’@‘ ) no longer changes. Then apply l;\(e .

Bond by bond compression

A
Apply [/1” to bond 1-2, —
SvVD E ‘
then reshape, SVD, truncate; truncate SVD | .
- - truncate SvD ]
repeat for bond 3-4, then 5-6, etc. truncate SVD

truncate

This protocal keeps bond dimensions low throughout, hence is cheaper. However, some interdependence
of successive truncations may creep in, hence variational compression is, strictly speaking, cleaner.

The difference between variational and bond-by-bond compression strategies becomes negligible for

sufficiently small T , because then the state does not change much during a time step anyway,
so truncations are benign.

With bond-to-bond compression, there is no need to split H = H ¥ [.[e U= U e‘&o @)

Instead, Trotterize as follows:
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Error analysis
Error analysis for nth order Trotter scheme
n+( [y
= error per step) (# of steps) = t =
Ty = (error per step) ( p) =T L Tt @)

linear in time; controllable by reducing ©

Truncation error due to truncation of bond dimensions:

Ty ~ € , grows exponentially!  (until you 'hit the wall')

Reason: under time evolution, state becomes increasingly more entangled; on a bond :?—'—e-

Se =~ Z (S5 algn ) ®

entanglement entropy is

This is maximal if all singular values on bond are equal, (5"‘0‘32’ = ""D ) = 55 £ '&"’ZD 19

If Hamiltonian H ( t) s changed abruptly (quench) such that global energy changes extensively, then

S(t) £ Sl + et (2o)

[For less dramatic changes (e.g. local perturbation), entanglement growth is slower; but still significant.]

4
ZS( ) )

Bond dimension needed to encode entanglement entropy S € isgivenby D(t) =

If, however, bond dimension D is held fixed during time evolution, errors will grow exponentially.

A guantitative error analysis has been performed by [Gobert2005] on the exactly solvable XX model:

[Gobert2005] ~ £ X ¥ ¢y .
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FIG. 6. Magnetization deviation AM(7) as a function of time for
different numbers m of DMRG states. The Trotter time interval is
fixed at dr=0.05. Again. two regimes can be distinguished: For
early times. for which the Trotter error dominates. the error is
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Hwain wall
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withtime
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slowly growing (essentially linearly) and independent of m (regime 0.4 1=0
A): for later times. the error is entirely given by the truncation error. _ domain wiall
which is m-dependent and growing fast (almost exponential up to F at time t20
. . L. . 40 60 80 100 120 140 160
some saturation: regime B). The transition between the two regimes n
occurs at a well-defined “runaway time™ 7z (small squares). The |S% (u“ o4
0.z b

inset shows a monotonic. roughly linear dependence of 7z on m. ° o - 03 04 08
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2. Finite temperature: purification [Verstraete2004b], [Schollwéck2011, Sec. 7.2.1] DMRG-III.2

General quantum-mechanical density matrix for a mixed state, 5 = \ /,.) Mv vl )
f AV Q?
has three defining properties: ' denotes 'physical
. e ~} n
(i) Hermiticity: F = {J @
n
(ii) Positivity: Eigenvalues are non-negative: = let Lot | 3
P b'asovm[ckl % PP * P (
20
(iily Normalized: Tt ﬁ = | 5 = f"‘ = | ()
o~
~ A2
Expectation values: 4 O> = T ( F ) ) or m (s)
Tr(p )

if one works with non-normalized "3
'Purification’

A
Can we represent f) in terms of a pure state?
Yes: double Hilbert space by introducing an 'auxiliary' state for each physical state, and define

'purified state': |1Q> = % 0‘> | 7 W—‘ &€ .@@ﬂ? (6}
auxiliary &7 ?physmal I e

This can be viewed as Schmidt decomposition of a pure state in doubled Hilbert space.

Norm yields trace: (‘42“{) = Z_,f{): P(cx' \fo«'lon( m)ﬁ = z [)“ = Trf)?

1~
Tracing out auxiliary state space from H_}; DL ’&f ] (a pure DM in doubled Hilbert space) )
yields physical density matrix f)‘, (a mixed DM in physical Hilbert space):

Y
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@
Purified-state expectation values in doubled Hilbert space yield thermal averages in physical space:
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If f’,‘ is not normalized, use P [ 1o éﬁl ’LE) T30 L
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If P is not normalized, use <1 1 a?l 7))

M = <5P> (2)

QAN Te fr
Thermal density matrix
Thermal equilibrium is described by ﬁs Hp - Z ( o() e PE p< [ (13)
A _RE
Not normalized: T}? Ff = e f % = Z(F) =  partition function # ¢ (1e)

Purified version: [?% \o() |N> - ﬁEa/Z = e"/SHrlz % ‘OOQ‘OQP (s)

' —
acts only on physical spalz!

N
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maximal aux-phys entanglement
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product state, with each factor describing maximal aux-phys entanglement at site 4,

Note:at T=w ,ie. F = p ,Wehave (17 = |7§°7 (all states (57 are equally likely).
Check:
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Protocol for finite-T DMRG calculations

6 6 6 6n & auxiliary legs
Start from pure 1T = | I R R A T "
. Y, '4 7 * ) 4 - 4 7 4 i * x (H)
product state in 6, 6, 6 6, ©— physical legs
doubled Hilbert space: T’\

bond dimension = 1

Perform imaginary-time evolution over a 'time' fs/z , acting only on physical space:

< auxiliary legs
x S ~ =~ S L LY L

> = —é““hm S N S S S S

[ Ie'fs"l’/z

& physical legs
(Trottenze )
compress

e et

For thermal averages, trace out auxiliary space:
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For thermal averages, trace out auxiliary space:
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3. Exponential thermal renormalization group [Chen2018a] DMRG-IIL.3
(XTRG)

/

Goal: computation of the thermal density matrix, /B( F) = e~ 2 H /s = /71 )
for arbitrary temperature T, in particular large to intermediate T , (i.e. small to intermediate ﬁ )

A - A a
Once p s known, thermal expectation values follow from < © 7/3 = Te | f) (p) O 1 )

Further application: to obtain ground state projector, take /l — e

. ~THN
One option: imaginary time evolution with Trotter decomposition, /D(F) = [ é ] ) T~ /S/,\/

However, then number of time steps increases linearly with /5 , SO reaching low T is numerically costly.

m

Key observation 1: If "(ﬁ) is represented as an MPO,

= (b)
the MPO entanglement entropy grows only logarithmically = Lzi~B
with decreasing temperature: [Barthel2017], [Dubail2017] = T -
Se ( Y ~ {a (8 (for 1D systems) («) 1 temperature controls
{5 ﬁ _for~g l correlation length

Thus, seek algorithm which lowers temperature in exponential steps!

T 27 37 47 e 1[1[3
Key observation 2: multiplying the density matrix by itself —e—o0 o o o—>
lowers the temperature by a factor of 2 : A V]

K
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XTRG algorithm exploits this:

(i) Initialize density matrix at very high temperature, as an MPO (with small bond dimension):
) A ‘
0 B O Y 2 o ¢
( . /59 ) [go Io )

(ii) Compute /31?,5) /3 ( [} via MPO multiplication.

CE — ..
(i) Reduce bond dimension by global variational optimization:
p o z
3t xr A-B-Clg = @ ,
fe”_] tes + HA J\\\ RI\
P(/}\ E(P) P”PS Frobenius norm ¥
(fat) input MPO,  compressed MPO, D,

large bond dim smaller bond dim.
Compute environment of bond to be updated iteratively,
use SVD to bring updated MPO bond into canonical form.
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