TNB-II.1

1. Singular value decomposition (SVD)

[Schollwoeck2011, Sec. 4]

(1), (3), (4) imply:

$$MM^{+} \stackrel{(i)}{=} (USV^{+})(VSU^{+}) \stackrel{(i)}{=} US^{2}U^{+} \stackrel{(s)}{\Rightarrow} MM^{+}U = US^{2} \qquad (5)$$

$$M^{\dagger}M \stackrel{(i)}{=} (VSU^{\dagger})USU^{\dagger} \stackrel{(3)}{=} VS^{2}V^{\dagger} \stackrel{(4)}{\Rightarrow} M^{\dagger}MV = VS^{2} \qquad (6)$$

So, columns of U are eigenvectors of MM^{\dagger} , and columns of V are eigenvectors of $M^{\dagger}M$.

Def: Frobenius norm:
$$\|M\|_{F}^{L} := \sum_{\alpha\beta} |M_{\alpha\beta}|^{2} = \sum_{\alpha\beta} M_{\alpha\beta} M_{\alpha\beta} = \sum_{\alpha\beta} M_{\beta\alpha}^{+} M_{\alpha\beta} = T_{F} M_{M}^{+} M_{\alpha\beta} = T_{F} M_{M}$$

Truncation

SVD can be used to approximate a rank τ matrix M by a rank $\tau'(<\tau)$ matrix M': $M = U S V^{\dagger}$ Suppose (7) s_{α} 100 $S = diag(S_1, S_2, ..., S_r, o, ..., o)$ with (8)

D"-- f zeros

D_{min}-r' zeros

Truncate:
$$M' := M S' V^{\dagger}$$

with
$$S' := diag(s_1, s_2, \dots, s_{f^1}, 0, \dots, 0, \dots, 0)$$

Retain only \uparrow largest singular values!

Visualization, with $\tau = D_{min}$:

(9)

(10)

SVD truncation yields 'optimal' approximation of a rank τ matrix M by a rank τ' ($< \tau$) matrix M', in the sense that it can be shown to minimize the Frobenius norm of the difference, M - M'.

$$\|M - M'\|_{F}^{2} = T_{F}(M - M')^{\dagger}(M - M') = T_{F}(M^{\dagger}M + M'^{\dagger}M' - M'^{\dagger}M - M^{\dagger}M') \quad (11)$$

similar steps as for (8)

$$= T_{r} \left(S \cdot S + S' \cdot S' - S' \cdot S - S \cdot S' \right)$$

$$= S' \cdot S' = S' \cdot S' = S' \cdot S'$$

$$= S' \cdot S' = S' \cdot S' = S' \cdot S'$$

$$= S' \cdot S' = S' \cdot S' = S' \cdot S'$$

$$= T_{r} \left(S^{2} - S'^{2} \right) = \sum_{\alpha=1}^{T} S_{\alpha}^{2} - \sum_{\alpha=1}^{T'} S_{\alpha}^{2} = \sum_{\alpha=1}^{T'} S_{\alpha}^{2}$$

$$= \left(S^{2} - S'^{2} \right) = \sum_{\alpha=1}^{T} S_{\alpha}^{2} - \sum_{\alpha=1}^{T'} S_{\alpha}^{2} = \left(S_{\alpha}^{2} - S_{\alpha}^{2} \right)$$

$$= \left(S^{2} - S'^{2} \right) = \left(S_{\alpha}^{2} - S_{\alpha}^{2} \right)$$

$$= \left(S^{2} - S'^{2} \right) = \left(S_{\alpha}^{2} - S_{\alpha}^{2} \right)$$

$$= \left(S^{2} - S'^{2} \right)$$

'truncated weight'

and R1 upper triangular.

QR-decomposition is numerically cheaper than SVD, but has less information (not 'rank-revealing').

2. Schmidt decomposition

[most efficient way of representing entanglement]

MPS-II.2

If $\checkmark = \langle , \text{'classical' state:} | \psi \rangle = \langle , \rangle_{\mathcal{A}} \langle , \rangle_{\mathcal{A}}$. If $\checkmark \geq 1$: 'entangled state' In this representation, reduced density matrices are diagonal:

$$\hat{\rho}_{A} = T_{T_{g}} | \psi \rangle \langle \psi \rangle = \sum_{\lambda} | \lambda \rangle (s_{\lambda})^{2} \langle \lambda | \qquad (12)$$

$$(\psi \psi^{\dagger})$$
, $(\psi^{\dagger}\psi)$ with $\psi^{\lambda\lambda'} = S_{\lambda} I^{\lambda\lambda'}$ (13)

$$\hat{\rho}_{g} = T_{T} | \psi \rangle \langle \psi \rangle = \sum_{\lambda} | \lambda \rangle (s_{\lambda})^{2} \langle \lambda | \qquad (16)$$

$$\mathcal{S}_{\mathcal{A}|\mathcal{B}}^{\prime} = -\sum_{\lambda=1}^{\mathcal{F}} (S_{\lambda})^{2} \, l_{m_{2}}(S_{\lambda})^{2} \qquad (15)$$

Sz

Entanglement entropy:

Note: for given \uparrow , entanglement is maximal if all singular values are equal, $S_{\lambda} = \uparrow^{-1/2}$ (16)

How can one approximate
$$|\psi\rangle = \sum_{\alpha\beta} |\beta\rangle_{\beta} |\alpha\rangle_{\beta} \psi^{\alpha\beta}$$
 by cheaper $|\psi\rangle$?
 $||\psi\rangle|_{2}^{2} \equiv |\langle\psi|\psi\rangle|_{2}^{2} = \sum_{\alpha\beta} |\psi|_{\beta}^{2} = ||\psi|_{F}^{2}$ (17)

Define truncated state using $r'(c_r)$ singular values:

$$|\tilde{\psi}\rangle \equiv \sum_{\lambda=1}^{+} |\lambda\rangle_{\mathcal{B}} |\lambda\rangle_{\mathcal{A}} |S_{\lambda}\rangle$$
 (18)

If $|\tilde{\psi}\rangle$ should be normalized, rescale, i.e. replace S_{λ} by

$$\sum_{\lambda'=1}^{\tau'} \left(\begin{array}{c} \boldsymbol{s}_{\lambda'} \\ \boldsymbol{s}_{\lambda'} \end{array} \right)^{-1/2}$$
(19)

Truncation error:

$$\|\psi\rangle - |\psi\rangle\|_{2}^{2} = \langle \psi|\psi\rangle + \langle \psi|\psi\rangle - 2 \operatorname{Re} \langle \psi|\psi\rangle - \frac{10^{-2}}{10^{-2}}$$

$$= \sum_{\lambda=1}^{7} (S_{\lambda})^{2} + \sum_{\lambda=1}^{7} (S_{\lambda})^{2} - 2 \sum_{\lambda=1}^{7} (S_{\lambda})^{2} = \sum_{\lambda=1}^{7} (S_{\lambda})^{2} - \frac{10^{-2}}{10^{-4}}$$

$$= \sum_{\lambda=1}^{7} (S_{\lambda})^{2} + \sum_{\lambda=1}^{7} (S_{\lambda})^{2} - 2 \sum_{\lambda=1}^{7} (S_{\lambda})^{2} = \sum_{\lambda=1}^{7} (S_{\lambda})^{2} - \frac{10^{-2}}{10^{-4}}$$

sum of squares of discarded singular values

Useful to obtain 'cheap' representation of $|\psi\rangle$ if singular values decay rapidly.

The truncation strategy (18) minimizes the truncation error. It is used over and over again in tensor network numerics.

[generates a 1d tensor network]

TNB-II.3

Continue similarly until having added site N. Eigenstates of H^{N} in H^{V} have following structure:

Nomenclature:

 σ_{ℓ} = physical indices,

$$\propto$$
 , β , γ ... = (virtual) bond indices

Alternative, widely-used notation: 'reshape' the coefficient tensors as

$$\widehat{A}_{\alpha}^{\sigma_{1}} = A^{\sigma_{1}}_{\alpha}, \quad \widehat{B}_{\alpha\beta}^{\sigma_{2}} = B^{\kappa}_{\beta}, \quad \widehat{C}_{\beta\gamma}^{\sigma_{3}} = C^{\beta\sigma_{3}}_{\beta\gamma}$$

to highlight 'matrix product' structure in noncovariant notation:

$$|\{ \} = |e_1\rangle \otimes \dots \otimes |e_3\rangle \otimes |e_2\rangle \otimes |e_1\rangle \widetilde{A}_{\alpha}^{e_1} \widetilde{B}_{\alpha\beta}^{e_2} \widetilde{C}_{\beta\gamma}^{e_3} \dots \widetilde{D}_{\mu\delta}^{e_{N}}$$

Comments

1. Iterative diagonalization of ID chain generates eigenstates whose wave functions are tensors that are expressed as matrix products.

Such states an called 'matrix product states' (MPS)

Matrix size grows exponentially:

Numerical costs explode with increasing N, so truncation schemes will be needed...

Truncation can be done in controlled way using tensor network methods!

 $\bigotimes \beta \bigvee \ldots \leq D$ for all virtual bonds Standard truncation scheme: use

2. Number of parameters available to encode state:

 $\mathcal{N}_{MP5} \stackrel{\leq}{\underset{\text{would be '=' if all virtual bonds have the same dimension, D}}{\mathcal{N} \cdot \mathcal{D}^2 \cdot d}$

AMEN~D

 \mathcal{N}_{MPS} scales linearly with system size, \mathcal{N}

If N is large: NMPS <<< d^N

Why should this have any chance of working? Remarkable fact: for 1d Hamiltonians with local interactions and a gapped spectrum, ground state can be accurately represented by MPS!

Why? 'Area laws'! Tensor Network Basics I.2.

TNB-II.4

A generic tensor of arbitrary rank can be expressed as a MPS by repeatedly performing SVDs.

$$C \qquad \text{reshape} \qquad C \qquad \text{reshape} \qquad QR \qquad QR \qquad QR \qquad QR \qquad \text{reshape} \qquad QI \qquad Product R \qquad \text{reshape} \qquad QI \qquad Product R \qquad Product R$$

In formulas ('reshape' means regroup indices):

If a maximal bond dimension of $\mathcal{D}_{\varkappa} \prec \mathcal{D}$ is desired, this can be achieved using SVD instead of QR decompositions, and retaining only the largest \mathcal{D} singular values at each step:

$$\begin{array}{c}
\overset{\tilde{S}_{\alpha}}{=} \\ & \overset{\tilde{S$$