
Any matrix          of dimension                can be written as 

Properties of S

square matrix, of dimension                                  , with •

diagonal, with non-negative diagonal elements, called 'singular values'•

'Schmidt rank'       : number of non-zero singular values•

arrange in descending order:•

zeros

Properties of     :    

matrix of dimension•

columns are orthonormal:•

Properties of      :       

matrix of dimension•

rows are orthonormal:•

TNB-II.1

[Schollwoeck2011, Sec. 4]

but

but

(not unitary)

(not unitary)

1. Singular value decomposition (SVD)

Tensor Network Basics II
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(1), (3), (4) imply:

So, columns of          are eigenvectors of             ,    and columns of         are eigenvectors of   

Truncation

SVD can be used to approximate a rank       matrix         by a rank                    matrix         : 

Suppose

with

zeros

Truncate: 

with

zeros

Visualization, with                     :Retain only      largest singular values!

Def: Frobenius norm:   

evaluated via SVD: 

trace is cyclic
singular values
determine norm
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QR-decomposition

If singular values are not needed, 

a                 matrix          

has the 'full QR decomposition'

If D ≥ D', then M has the 'thin QR decomposition'

and           a                  upper triangular matrix, if

with          a                  unitary matrix,      

                                   but                     

QR-decomposition is numerically cheaper than SVD, but has less information (not 'rank-revealing').

with dim(Q1) =               ,     dim(R1) =               ,   

and R1 upper triangular.

                                                   

SVD truncation yields 'optimal' approximation of a rank       matrix         by a rank                 matrix  

similar steps as for (8)

in the sense that it can be shown to minimize the Frobenius norm of the difference,                  . 

'truncated weight'
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Consider a quantum system composed of two subsystems,       and      ,

with orthonormal bases                    and                   .                    

Pure state on                  :

Reduced density matrices of subsystems          and          :

With indices:

Hence

where

and !

Restrict               to the              non-zero singular values:

MPS-II.2

Singular value decomposition

Use SVD to find bases for      and        

which diagonalizes density matrices:

are orthonormal sets of states for           and           , and can be extended to yield orthonormal

SVD

Orthonormality is guaranteed by

[most efficient way of representing entanglement]

bases for              and               if needed.

'Schmidt decomposition'

2. Schmidt decomposition
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In this representation, reduced density matrices are diagonal:

Entanglement entropy:

How can one approximate                                                       by cheaper               ?

Define truncated state using                             singular values:

If               should be normalized, rescale, i.e. replace           by                                             

Truncation error:

sum of squares of discarded singular values

Useful to obtain 'cheap' representation of                if singular values decay rapidly.

The truncation strategy (18) minimizes the truncation error. 

It is used over and over again in tensor network numerics. 

Note: for given     , entanglement is maximal if all singular values are equal, 

If            , 'classical' state:                                           If                   : 'entangled state'
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Consider a spin-s chain, with Hamiltonian

local state space for site      :

We seek eigenstates of :

Diagonalize Hamiltonian iteratively, adding one site at a time:

N=2:  Add second site, diagonalize         in Hilbert space          :

N=3:  Add third site, diagonalize           in Hilbert space          :

Continue similarly until having added site N. Eigenstates of         in         have following structure:

N=1:  Start with first site, diagonalize         in Hilbert space         . Eigenstates have form 

combine 'incoming'          into 'outgoing' 

coefficient tensor

coefficient matrix

combine 'incoming'             into 'outgoing' 

(sum over       implied)

'matrix multiplication' for 'contracted' index

(sum over           implied)

contracted indices

TNB-II.3
[generates a 1d tensor network]3. Iterative Diagonalization
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'matrix product state'  (MPS)

Alternative, widely-used notation: 'reshape' the coefficient tensors as

to highlight 'matrix product' structure in noncovariant notation:

Such states an called 'matrix  product states' (MPS)

Matrix size grows exponentially:

has dimension                    (vector)

has dimension                    (rectangular matrix)

has dimension                    (larger rectangular matrix)

for given        ,

for given        ,

for given        ,

Nomenclature: = physical indices, = (virtual) bond indices

Comments

1. Iterative diagonalization of ID chain generates eigenstates  whose wave functions are tensors that 
are expressed as matrix products.
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'Hilbert space is a large place'

Numerical costs explode with increasing N, so truncation schemes will be needed...

Truncation can be done in controlled way using tensor network methods!

  for all virtual bondsStandard truncation scheme: use

Number of parameters available to encode state:2.

would be '=' if all virtual bonds have the same dimension, D

scales linearly with system size, 

If       is large: 

Why should this have any chance of working?  Remarkable fact: for 1d Hamiltonians with local 

interactions and a gapped spectrum, ground state can be accurately represented by MPS!

Why?   'Area laws'! Tensor Network Basics I.2.
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TNB-II.4

A generic tensor of arbitrary rank can be expressed as a MPS by repeatedly performing  SVDs. 

reshape reshape

reshape

QR

QR etc.

Again, the dimensions grow as 

In formulas ('reshape' means regroup indices):

reshape reshape

reshape

QR

QR etc.

If a maximal bond dimension of                        is desired, this can be achieved using SVD instead of QR 

decompositions, and retaining only the largest      singular values at each step:

reshape

reshape

SVD truncate

for

otherwise

This yields truncated respresentation: 

4. Reshaping generic tensor into MPS form
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