
TNB-I.0Summer semester, 2021 Jan von Delft

Why study tensor networks? Because tensor networks provide a flexible description of quantum states. 

They encode entanglement between subsystems in the bonds linking the tensors of the network.

Course outline:

Tensor network basics•

Matrix product states (MPS): 1d tensor networks •

Symmetries - QSpace•

Density Matrix Renormalization Group (DMRG) for 1d quantum lattices models •

Numerical Renormalization Group (NRG) for quantum impurity models•

Projected Entangled Pair States (PEPS) for 2d quantum lattice models•

Various Tensor Renormalization Group (TRG) approaches•

MPS

MPS

PEPS

Notation for generic quantum lattice system1.

Entanglement and Area Laws2.

Tensor network diagrams (graphical conventions)3.

Covariant index notation4.

Lecture 01: Tensor networks basics I

References: consult the bibtex file TensorNetworkLiterature.bib on course website → References

Tensor Networks
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Local state space of site     :

Local state label:

Local dimension: 

Shorthand: 

Index      on state label       suffices to identify the site Hilbert space

Generic basis state for full system of N sites (convention: add state spaces for new sites from the left):

identifies length of chain

Hilbert space for full chain:

General quantum state:

wavefunction

arbitrary linear combinations

Dimension of full Hilbert space        : (# of different configurations of        )

Specifying    involves specifying , i.e. different complex numbers.

is a tensor of rank

graphical representation

- a link between two sites represents entanglement between them

- different representations ⇒ different entanglement book-keeping

- tensor network = entanglement representation of a quantum state

summation over
repeated indices implied

TNB-I.1

MPS: matrix product state

PEPS: projected entangled-pair state arbitrary tensor network

Claim (to be made plausible later): such a rank     tensor can be represented in many different ways:

For concreteness, we introduce some general notation 

for describing a generic quantum lattice system.

Think of spin-    lattice in arbitrary dimensions, with       sites, 

enumerated by an index 

number of legs

We will see: 

1. Notation for generic quantum lattice system
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Divide system into two parts,      and    . Suppose        has linear dimension      .

'reduced density matrix' for     :

Consider quantum system in Pure  state           , with density matrix 

and 

'Entanglement entropy' of     and     :

eigenvalues of

Remarkable fact: for Hamiltonians with only local interactions, the ground state entanglement 

entropy is governed by an 'area law':

(area of boundary of        )

in 3D for gapped system

in 2D for gapped system

in 1D for gapped system

in 1D for gapless system

TNB-I.2

To obtain reduced density matrix of      (or    ), trace out     (or      ):

Suppose the two subsystems,       and      , are defined on Hilbert spaces with 

with dimensions        and        ,  and orthonormal bases                    and                   .                    

General form of pure state on                  :

Density matrix:

Area law has consequences for the numerical costs required for adequately encoding the entanglement in 

tensor network descriptions of the ground state. To see this, we review some basic properties of reduced 

density matrices.

Here         and          enumerate all basis states of Hilbert spaces of         and          , respectively.

graphical notation

number of sites 
(dimensionless)

E.g. 

2. EntanglementeEntropy and area laws
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Reduced density matrix of subsystem        :

with

Analogously: reduced density matrix of subsystem        : 

with

Diagrammatic derivation:

Algebraic derivation:

Now it is always possible to find bases for the Hilbert spaces of        and         in which reduced density 

matrices are diagonal.  (Tool to achieve this: 'singular value decomposition', see Sec. TNB-II.1.)

E.g. for     : 
eigenvalues

Entanglement entropy:

Maximal if for all        :

Normalization

with
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1D gapped: 

1D critical:

2D gapped:

3D gapped:

Important conclusion: for gapped and gapless systems in 1D, 

ground state entanglement can be encoded efficiently using limited numerical resources.

For 2D or 3D systems, numerical costs grow exponentially. 

(independent of system size!)

To fully capture entanglement between subsystems

must satisfy

and , the reduced density matrix dimension   

Tensor network diagrams (graphical conventions) -

Singular value decomposition (needed for finding efficient representations of entanglement)-

Schmidt decomposition (most efficient way of representing entanglement)-

Next:

Quite generally, entanglement between subsystems can be encoded via tensors. For several connected subsystems

(e.g. lattice sites), this leads to a description in terms of tensor networks. 

In 

the entanglement between subsystems        and          is encoded in the two-index tensor 
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[Orus 2014, Sec. 4.1]
TNB-I.3

'tensor' = multi-dimensional array of numbers

'rank of tensor' = number of indices = # of legs 

'dimension of leg' = number of values taken by its index,  

rank-0:   scalar

rank-1:   vector

rank-2:   matrix

rank-3:   tensor

Index contraction: summation over repeated index

= 'bond dimension' of index 

graphical representation of matrix product

(depends on context, can be different for each index; is often/usually not written explicitly)

'open index' = non-contracted index     (here      ,       )

'tensor network'  = set of tensors with some or all indices contracted according to some pattern

Examples:

scalar vector    dual vector

Trace of matrix product:

overbar denotes 
complex conjugation

[Our conventions for using arrows and distinguishing between super- and subscripts ('covariant notation') 
will be explained in Sec. TNB-II.1. In short: incoming = upstairs, outgoing = downstairs. Use of covariant 
notation is not customary in tensor network litertarure - most authors write all indices downstairs, and you 
may do so too. However, covariant notation does become useful when exploiting non-Abelian symmetries.]

3. Tensor network diagrams
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Cost of computing contractions

Result of contraction does not depend on order in which indices are summed, but numerical cost does !

Example 1: cost of matrix multiplication is

Cost = 

For every fixed        and           (                 combinations), sum over          values of 

(simplifies to           if all bond dimensions are =     )

Example 2:

contracting 

independent of      !!

Finding optimal contraction order is difficult problem! In practice: rely on experience, trial and error…

First contraction scheme has total cost                    ,  second has                      !!

contracting contracting 

contracting contracting 
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Index and arrow conventions below, adopted throughout this course, are really useful, though not (yet) standard.

For components of kets (w.r.t. a basis), indices sit upstairs:

Repeated indices (always up-down pairs) are summed over, summation        is implied. 

Linear combinations of kets:

Note: for             the index        identifies components of kets, hence sits upstairs
                                        the index        identifies basis kets (vectors), hence sits downstairs          

For kets, indices sit downstairs. E.g. basis kets: 

For bras, indices sit upstairs. E.g. basis bras: 

For components of bras (w.r.t. a basis), indices sit downstairs:

Complex conjugation [(6) is dual of (1)]:

Linear combinations of bras:

Complex conjugation  [(8) is dual of (2)]:

Note: for             ,  the index        identifies basis bras (dual vectors), hence sits upstairs

                             the index        identifies components of bras, hence sits downstairs

(Hermitian 
conjugation!)

Kets (Hilbert space vectors)

Bras (Hilbert space dual vectors)

For exposition of covariant index notation, see chapters L2 & L10 of 

"Mathematics for Physicists", Altland & von Delft,  www.cambridge.org/altland-vondelft

TNB-I.4

Basis for direct product space: 

Linear combinations:

Basis for direct product space: 

Linear combinations:

Complex conjugation [(12) is dual of (4)]:

Note ket order: start with first space on very right, successively attach new spaces from the left. 

Note bra order: opposite to that of kets in (3), so expectation values yield nested bra-ket pairs:

(Hermitian conjugation!)

reversed index order on tensor!

4. Covariant index notation
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In kets, use subscript indices as ket names: 

Linear combination of kets:

Coefficient matrix = overlap:

If                 form orthonormal basis:

If                form orthonormal basis, too:

Combined:

Hence A is unitary:

It is customary to simplify notational conventions for kets and bras:

In bras, use superscript indices as bra names: 

Linear combination of bras:

Coefficient matrix = overlap:

In all these overlaps
(22,24,26,28): 

ket indices: written downstairs on       or        , depicted by outgoing arrows

Orthonormality

Simplified notation

If direct products are involved:

Coefficient matrix = overlap:

If direct products are involved:

Coefficient matrix = overlap:

Now up/down convention for indices is no longer displayed; but it is still implicit!

bra indices: written upstairs on          or         , depicted by incoming arrows

Operators

Operators:

index-reading-order

index-reading-order
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Mnemonic for arrow directions:  'airplane landing':  flying in (up in air), rolling out (down on ground).
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