TRG-II: Graph-Independent Local Truncations (Gilt) TRG-II.1

Goal: improve TRG by fully removing local correlations, including those in local loops. e

Strategy: devise truncation scheme based on 'environment spectrum’ of local tensors. ‘ l d
Wl

1. Motivation P ) P

TRG is concrete, quantitative implementation, for lattice models, of Wilson's RG idea:

T coarse-grain T /
_—

initial tensor renormalized tensor

This generalizes Kadanoff's block-spin RG, H(ﬁ) — H’lg) = H( 3‘) , which approximates coarse-
grained system by same Hamiltonian, but parametrized by rescaled coupling. TRG instead allows the
form of the Hamiltonian (or corresponding tensors) to change.

BUT: TRG, as formulated by Levin & Nave, does not fully remove all local correlations.

Reason: it is based on SVD of local tensors, so removes local correlations only for 'tree tensor networks'.
Effect of environment is not included (SRG / full update is an attempt to do that). As a result, fixed
point tensors still include some information from short-range physics. Hence, TRG does not yield 'proper
RG flow' (which should eliminate all short-range physics).

Needed: schemes that fully remove local correlations at each length scale.
Some key players in this quest:
Levin himself pointed out that TRG fails for 'corner double-line tensors' (CDL). (Public talks, 2007).

[Gu2009] Gu & Wen: clearly identify above problem, proposed 'tensor-entanglement-filtering
renormalization' (TERG) to remedy it. This led to discovery of 'symmetry-protected topological order’,
and a classification thereof via structure of fixed-point tensors. Very influential paper!

[Evenbly2015] Evenbly & Vidal: propose 'tensor network renormalization' (TNR), which goes beyond
TRG by including 'disentanglers', allowing removal of all short-ranged correlations at each length scale.

[Evenbly2015a] Evenbly & Vidal: show that TNR generates a MERA (multiscale entanglement
renormalization approach) structure. (MERA was proposed in [Vidal2007], [Vidal2007a], and
first described in detail by Evenbly & Vidal in [Evenbly2009].)

[Evenbly2017] Detailed description of TNR, including strategies for optimizing disentanglers Nod
(carried over from MERA, as described in [Evenbly2009]). The schemes are very costly! Huwe

[Yang2017] Yang, Gu, Wen: propose loop optimization for TNR (loop-TNR), which is more
effective than TERG. Also more effective and computationally cheaper than TNR.

[Ying2017] Proposes 'tensor network sceletonization' (TNS). Separate steps for coarse-graining and
removal of local correlations. Needs costly iterative optimization. Blind to nature of local correlations.

[Bal2017] Bal, Marién, Haegeman, Verstraete: propose TNR+, similar in spirit to [Yang2017], but
using element-wise purely positive tensors.

individual bonds of network, based on analysis of environment spectrum. Very simple, clear

[Hauru2018] Hauru, Delcamp, Mizera: propose 'graph-independent local truncations' (Gilt) of l-w(aﬁ
scheme. Outperforms all previous 2D approaches. Was even applied for 3D (!!) system.

[Evenbly2018] Proposes 'canonical form' and 'optimal truncations' for tensor networks with
closed loops. Optimization scheme includes environment information. Simpler than optimization
scheme of MERA/TNR. Performance: better than TNR and loop-TNR, comparable to GILT.
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2. Why is TRG insufficient?

[Hauru2018, Sec. 2]

TRG-II.2

Representing partition function of classical model as a tensor network (graphical argument):
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- each site hosts a classical

configuration variable

- (i) each bond is characterized

by Boltzmann weight, W/
SGiysvD: W o= M#mT

- (iii) at each vertex, contract

bonds to obtain 4-leg tensor, Q

(i) Use trur)lcated SVD to split 4-leg
tensor A’ along two different diagonals

(ii) Contract sets of 3-leg tensors to
obtain new 4-leg tensors.

Shaded red loops represent 'short-range
loop correlations'.

Step (ii) 'captures' half of the red loops:
their effect is encoded in A%+

But other half of the red loops remain,
and become nearest-neighbor correlations
of coarse-grained tensors.

This violates principle of RG that coarse-
grained description should not include short-
ranged (UV) details.

As a result, fixed-point tensors depend on non-
universal details, such as exact value of
temperature. (For a proper RG scheme, only

T < Tcor T > Tc should matter.



Corner double-line (CDL) tensors: an extreme example where TRG fails completely
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Each index is two-fold composite:

CDL _ 4CDL
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local tensor has product form!

Two observables on same plaquette
are strongly correlated.

Observables on different plaquettes
are totally uncorrelated.

CDL model is toy model for purely short-ranged physics: it encodes no correlations at length scales larger
than a lattice spacing. Under a proper RG, it should flow to a trivial fixed point.

However, TRG leaves CDL tensors invariant, i.e. CDL model is fixed point of RG transformation.

This example illustrates: TRG fails to remove loop correlations!

Terminology for this problem: 'accumulation of local, or short-range, correlations'.

This problem gets worse in higher dimensions...
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3. Environment spectrum [Hauru2018, Sec. 3] TRG-11.3

Consider a local neighborhood, T, of a global network.

Goal: make changes (typically truncations) to a local subnetwork, R,

E= T /R = environment that is left upon removing R from T

f
DoSVD, £ = USV, .
between incoming legs (coming from R) = =
and outgoing legs (going to outside):

Singular values = 'environmental spectrum' (quantifies how much R affects outside world)

The kernel of E (the incoming subspace that is mapped to 0) is irrelevant to outside and may be discarded.

out U S vt X ¢ ot
i E = ‘I R | B P I:l‘:” |
L. o
A spoan { Ker (€11
1
If K - R a KQr (E\) ‘ .....:
then replacement K —> R ..@'. = ©)

does not affect outside world.

If K -K : & 'low-weight subspace of E' (where, say, S, ¢ ) 5& low-weight subspace
( . z > —
then £ — Rg' affects outside world only weakly. , .

| 2

Simple example: splitting 4-leg tensor via truncated SVD

Uj § truncate 7 < ©
d
Consider first step of TRG: = Tal ~ —
174l

This can be formulated as truncation of environment spectrum:

/

R
I
Choose R = two legs = product of two identity matrices: R=— T = "= = E
E = T, since cutting identity matrices from outer legs does nothing.

X !
X ~~
If R is replaced by R' = projector removing low-weight subspace of E, R = 9# =Uyt
X

(with intermediate bond dimension X' ¢ X% )

X
7l U4 it
then we recover SVD-truncation (6): ~ = 5 =
|4

.i.
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4. Gilt: Graph-independent local truncation TRG-I11.4

Let R = leg in a network T. For concreteness, let T = plaquette:

LS XX

Q)

&y
I
Il

Goal: reduce bond dimension of R, without affecting system beyond T. Environment spectrum S
controls information flow from R to outside. So, express leg R in SVD 'eigenbasis' of S:

(u vector, with components ~ /ace = sum over ‘top’ indices 2>

S
ﬂ iUT gUT \\“ti—”JgUi with Ui_z (=)
,.

uu' = bottom index fixed to i 5

on bond space —(®) = (09,9, ---, ©) = vector with i-th element = 1, all others = 0

“wu=1

Inserting (2) into (1), we see that

environment matrix, S, which is t
diagonal, multiplies elements of f/ () \ i
+ T s = =
T=2Z2: 8V, ®
2

0)
4
So, if we replace ‘1; by some other value, %i , differing from i’i ‘ t
{,
only for 2 & low-weight-subspace of E, Si < ¢, DLy 7(7'/ : & g
T
then | changesonly by ©OL¢) . L X
Correspondingly we can replace leg, € = 4. , Lsi
2
Py | :
T D *
byamatrix R =_& — U @ X

while T hardly changes: Iji ~ I:i _ 7 €

This freedom can be exploited to make matrix R' have as low rank, 9(' , as possible. Low is desirable,
since SVD of R', followed by redefinition of neighboring sites, brings down bond dimension to ?('

(8)
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Optimizing the choice of t' [Haure2018, App. B]

t X (
The rank of 'R' = UT - Z -é-: M{} as function of the coefficients 'i;, (%

L=t

is a complicated cost function to minimize. Simpler alternative: minimize
singular values of R' (not E )

_ Wt Tele et - Xt R'= usv!
Cv\wm = N1’ - ’([K R l b Z Si g'et = us*ut

vt ) = ke (1)
Rationale: minimizing this cost function requires reducing the individual 3;
and the more of them come close to zero, the smaller the rank of R'.
Pl

1457

Vv
AL

o+ cot
Moreover, CW,‘M = R'R = T (i.;ll{u l'(; 't;\:)
L——_V\./'

-—
=

So, those elements ii that we are free to choose (associated with low-weight-subspace of E)

should be chosen as small as possible. y ;
S o
On the other hand, the replacement C
of R by R' causes an error: e
| t-t
This error should remain (¢ (¢). V+V =4 2|near n
Thus, minimize combined cost function: =1
x , r . 5
E A ]
C{ei‘( = Cer/or + £ mem = Z([ Ii:i,- %..( S; ¥ & HL\ ] (13)
1=
SL ts
) ;
This is minimized by choosing i, = ":; = : T s (14)
[in effect, discard singular values Si < € ] v ,)(1, 2

. ) . ) f—wmh S_a ¢
Summary of GILT algorithm for truncating a leg R in an environment E 2

(i) SVD the environment E to obtain the unitary U and environment spectrum S. (*)

(ii) Compute the traces t; = Tr Us C[)'t

(i) Choose the vector t' according to (14) and compute the matrix Z (8 { 1,(+

. ' { -

(v)svoRas &' = usot o ¥ g ﬁ % e
Repeat (ii)-(iv) on same bond, now with R' as input: U U

(v) Once singular values S of R' have converged, multiply MJ" B into neighboring tensors, (8).

(*) We only need U and S, so instead of full SVD of E=US \/+ , it suffices to compute
eigenvalue decomposition of the Hermitian matrix E E+ as EEt = U ot u+

This is computationally much cheaper, and for square plaquette reduces cost to O ( /XBB .
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5. Gilt Tensor network renormalization TRG-IL.5

(Gilt-TNR)

Problem with TRG was: local correlations are dealt with properly only around every other plaquette.

Remedy: before each TRG step, apply Gilt to all four bonds of problematic plaquettes.
The four matrices R' must be created in serial, not parallel, since each one modifies environment of

others. Together, they truncate away any details internal to plaquette, by modifying tensors at corners:
each truncated bond contains no loop correlations!

'no loop correlations inside' !

+
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N

A single iteration of Gilt-TNR:
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mm
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for half the plaquettes.

l(”) (iv) Split B1, B2 tensors via standard TRG.
(v) Contract to compute new A.

o
o=

(i) Insert R' tensors on bonds
(ii) SVD R' tensors
(iii) Contract to compute B1, B2.

Y
o/
CP

)
A
)
N
CP

/

This removes internal correlations

bbb

This removes correlations
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Main advantage of Gilt-TNR over rivals:
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By "’ for other half of the plaquettes.
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- ist 'simplicity and generality'.

(iv)l ('minimal working implementation takes
mere hundred lines).

- No iterative optimization of truncation.

- Graph does not change.

- Applying Gilt to non-square lattices
requires simply changing the
neighborhood T used for Gilt step.

- So simple, that it has already been
applied to 3D (Ising model).
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6. Benchmark results [2D classical Ising model] TRG-IL.6

g 1074 3 I 1 1 1 |

11077 A0 1Sl TRe and Gilt-TNR obtained with same
& F 0 -0 Cilt-TNR [

< 61 code, for TRG the Gilt-algorithm was
B 10°F E .

= : ] simply turned off

= .t ]

SSERT ] - Gilt-TNR orders of magnitude

= more accurate than TRG,

g 10_9 E E

: _ 3

2 1070 L ] - at only moderate increase in run-time
it 61 min.

Q

o= 10~ 11 [ ] ] ] ! !

10 20 30 40 50 60 70

Bond dimension y

FIG. 5. Errorinfree energy of the critical 2D classical Ising model
atdifferent bond dimensions, for TRG and for Gilt-TNR. The numbers
next to the data points are total running times in minutes, for the
simulation consisting of 25 iterations of the algorithm. The exact
running times of course depend on hardware and implementation
details, but worth noting is the relatively small difference between
the TRG and Gilt-TNR algorithms. Even though adding Gilt into the
algorithm slows it down a bit, this is more than compensated for in
the quality of the results. For the Gilt-TNR results shown here, the
parameter € has been chosen to be 8 x 10~7. Note that this is not the
optimal choice of € for this whole range of x. Instead, one should
vary € as one varies y, making it smaller as x grows. It is only for
simplicity of presentation that we have chosen to stick to a single
value of € that performs well over the whole range of x’s shown.

TABLE 1. First few scaling dimensions of the Ising CFT, as ~ COMparison against other algorithms:

obtained by diagonalizing a transfer matrix on a cylinder/torus [28]. TRG: [Levin2007]
In all these cases the cylinder consists of two coarse-grained sites, but TNR: [Evenbly2015], [Evenbly2017]
the amount of coarse-graining varies. In the Gilt-TNR results a linear Loop-TNR: [Yang2017]

system size of 2° sites has been used, and € was chosen tobe 4 x 1077,

We are able to reach similar quality as with TNR and Lo.op-TNR, wiFh TNR, Loop-TNR, Gilt-TNR all have

moderate computational effort (the simulation in question finished in . o

a little less than 12 h on the machines we use, cf. Footnote 9). computational cost  ~ @[ L4 )
For same ‘X', TNR and Loop-

TNR are more accurate, but they

Exact TRG TNR Loop-TNR Gilt-TNR

x = 120 x =24 x =24 x =120
have very much larger run-times,

0.125 0.124993 0.1250004 0.12500011 0.12500015 due to iterative optimization

| 1.0002 1.00009 1.000006 1.00002
1.125 1.1255 1.12492 1.124994 1.12504 procedures.
1.125 1.1255 1.12510 1.125005 1.12506 L T MR
2 2.002 1.9992 1.9997 2.0002 For % s X
2 2.002 1.99986 2.0002 2.0002 but run times are comparable,
2 2.003 2.00006 2.0003 2.0003 i
> 2.002 2.0017 2.0013 2.0004 accuracy is comparable.
two dominant singular values one dominant singular value

T=0.9997T. T=0.999997, T=T, T=1.000017, T=1.001T,
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two dominant singular values

one dominant singular value

T'=0.999T, T'=0.999997T, I'=1, T=1.000011T, \/\ T'=1.0017,
T T T T T T T T T 1 v T T T T 1
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FIG. 6. RG flow of the coarse-grained tensors, illustrated for TRG (top row) and Gilt-TNR (bottom row) for five different temperatures.
he horizontal axis is the linear system size, or in other words the number of RG transformations applied. At each system size, the data points
re the 60 largest singular values of the coarse-grained tensor, with the same decomposition as that shown in (18). Thus each of the lines follows
1e development of one of the singular values along the RG flow. These singular values provide a rough, basis independent characterization of
1e structure of the tensor. Note how, for TRG, the spectrum is different at every temperature, even at the end of RG flow, when a fixed point

as been reached. In contrast, for Gilt-TNR, on both sides of the critical point the RG flow ends in a trivial fixed point characteristic of that
hase, with either one or two dominant singular values. At the critical point a complex fixed point structure is found that comes from the CFT.
his critical fixed point is maintained over several orders of magnitude in linear system size. These results were obtained with x = 110 for

oth TRG and Gilt-TNR. and € = 5 x 10~® for Gilt-TNR.
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FIG. 7. Typical environment spectra of a single leg with respect to
a squarc plaquctte in 2D (bottom four spcctra) and a cube in 3D (top
four spectra), each labeled with the corresponding bond dimension
x - Recall that in each spectrum, the large values correspond to parts
ofl the vector space of the leg that are relevant for physics outside
the plaquette or the cube, whereas small values signify contributions
relevant only for short-range details. The spectra in 3D can be seen
to decay much more slowly, indicating that larger bond dimensions
are necessary, before truncations with a small error are possible. The
behavior of the spectra as y is increased, is also somewhat different
in 2D and 3D. In 2D the longer spectra have more values mainly at
the bottom end, whereas in 3D new values appear almost throughout
the whole spectrum. The example spectra shown here are for the Ising
model, from systems that have been coarse grained thrice. Many other
choices of system sizes would yield qualitatively similar results, and
the same overall difference between 2D and 3D can also be seen with
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model, from systems that have been coarse grained thrice. Many other
choices of system sizes would yield qualitatively similar results, and
the same overall difference between 2D and 3D can also be seen with
the three-state Potts model.
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