Fermionic PEPS F-PEPS.1

Fermion signs in 2D fermionic tensor networks can be kept track of using two 'fermionization rules'.
[Corboz2009] with Vidal and [Corboz2010b] with Evenbly, Verstraete, Vidal first introduced them, for MERA.
[Corboz2010b] with Orus, Bauer, Vidal adapted them to PEPS context.

This is the approach described in [Bruognolo2020] and presented in this lecture.

Key ingredients: (i) use only positive-parity tensors
(ii) replace line crossings by fermion SWAP gates

Equivalent formulations had also been developed by:

[Barthel2009] with Pineda, Eisert, [Pineda2010] with Barthel, Eisert

[Kraus2010] with Schuch, Verstraete, Cirac

[Shi2009] with Li, Zhao, Zhou

[Bultinck2017a] with Williamson, Haegeman, Verstraete, building on [Bultinck2017] (same
authors); these papers use the mathematical formalism of 'super vector spaces'.

1. Parity conservation

o)
Fermionic Hamiltonians preserve parity of electron number: ? = (.. (3 Q)
a\
Al a ’\‘("‘ L PN ~dad a A ~ A
H = ¢c #« cCccce «~ ¢ +~CC (H,P) = o 0)

=>  all energy eigenstates are parity eigenstate, too, hence may be labeled by parity eigenvalue:

a n

A \“. ‘D = Eu‘?l&«iD , P \M,‘Q - ol ((D , P - ¥ (Z, -symmet[ys")
So, we may agree to work only with states of well-defined parity.

Example: state space of local fermions, lv\,t ) Ny, ?5 @

‘07 :=—lo,o;+) ; I‘N.)) = C:\\t ('.‘1‘ \03 = \l’ l; +>
)
)= oy =lie; - W= Slo) = lof; =),

Every line in tensor network diagram represents a state space, hence also carries a parity index.

[When keeping track of abelian symmetries, parity label can be deduced from particle number: P = (‘:)Q ]
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Enforcing Z‘;_svm metry [Corboz2010b, Sec.II.F]

To enforce Z ; Symmetry on tensor network: choose all terms to be 'parity preserving'.

Rule (i):  For every tensor, the total parity is positive:

n-leg tensor: H“h = o ff Bmzm““ = Plo)plete) .. plta) * 1 ©
Examples:

o

1)) & |f7 = lD,o;«-)* !l,oj-—> ?oes

1ty e, =% 7 T Pefy
= (#)(-)(-) = 1

149 \te) = lio:- {11, 4 oc

R 5y g I P - v = 4

l' lo 1.=%

"/\1:0;',\(4) lv\i\‘n" = ‘>
64

o 61: GJ: = ) —
I ¢ P 6 6" (PG' Po‘ ( PG‘ P"- ) +
CT C L ) (-
6‘1: ﬁ ya; CJ,rr and ( ! both change parity by (~)
My = Y g, ny=a? so overall changeis (-) = +

Page 2



2. Fermionic signs F-PEPS.2

L b4 + +
. .= = C:C- cCi = — C- . . _
C‘ C\i ‘ICL b} C‘ CJ - C\l CC ' C‘ C‘\i - 82\‘ - C’\fcc
To keep track of these signs, we choose an ordering convention, say \, = . N, and define:
4 ’
+ 4
‘lll ‘Z-"';"H> = 4 CN s CZC‘ \8‘,01’...,On3
')
We have to keep this order in mind when evaluating matrix elements. Example: consider N=3:
L4 -
14) = o1,y = C;Czl.loﬁ/ l#'y = (1 o) = L, cocy (o)
)
t 4 bt +
[ aly) = (ol e, ey i 10) = = Coleg ¢, &y dhiod =~
e —> —— e
8 ‘_ﬂ_; 17.
Let us repeat this computation in MPS language:  [Corboz2009, App. Al L———T

1
Order of vertical lines, from left to right, indicates order of operators acting on | 0 , from right to left.
A
Horizontal lines show how to move operators in © (here c‘\, ¢z ) into appropriate 'slots' in 1> or (%) |
Line crossings indicate operator swaps. An overall minus sign arises whenever two odd-parity lines cross,

because then two fermion operators are exchanged.

(S N S o) = le0.0)
- g e
=i 1, parity of index 1'“9# — lo,o,o)
J Cold
A
™~ Y+ o +
= |9 - G ilo) = [o,1,09
&
3
+ o - bt
e — ddge = o
~ CS
(V]
T S
: (c3: 1,100 =lo 1 0)
<O [ move slot 1 into a position R Iyt
where ¢} can directly ¢ =4; 1
act on it +,+ crossing: [ (+) + :ﬂ.( 13 ¢ [0
_ ) . _‘_ M./
—-4'-G +, = crossing: (.(.) 3 c
~, =~ crossing:| (- ¥ ¢
move slot 1 back into ) - “t 13 G IO)
its original position
- isé; c+. (0) =*ll‘l 0)
- [ A
(‘“’ 2 t +
+ - 1 1 Co Cu ‘5>
3 3
o C.
)
~ # k4
= GGG ) = (1 o o)
—_— - ——~ 7 4
v }
’ - ¢c, oy = ~-lo o o
—— / /
x-’s i T 1 <°/oz°l =1,
AV
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SWAP gates

Line crossings keep track of operator orderings.
(=) needed only for exchanging two lines which both host a fermion, i.e. which both have parity (-).

IS 4 14 4 4 1 4 4
10rC 10rC 1orC C+ 1orC C+ ct

4— -+ * - _
) ) )

To encode this compactly, introduce SWAP gate whose value depends on parity of incoming lines.

f

SP(“,xF ~ SF; SO‘F, 5(&,[9

— if &) = 2R = (-
o p' S(N,(Q = { I e P )

¢ otherwise

Rule (ii): (8 i

Operators [Corboz2010b, Sec. IIL.F]
Some matrix elements of operators involving fermions need minus signs.

Example: spinless fermions, consider two sites , \] , with local basis

] 6
lo—cs-“> = (C- \ @’ "‘6“0 2 ) 61‘é?0,l1
Two-site operator: 6 = Z (6"\ ’ D) OGE €i' (g; €\
- = ¢,y €o6g s

with matrix elements ((<})
s - L6l O U6 0 ) = 4o O\QC “"‘ ( Vi
O €c6y ‘-GJ ,',.%) - (be lo( ()3

Examples:
only non-zero element:

) ~ + . [; 0,
Hopping: O =¢; CJ / O \\0' |- = (o; o;’\ CE C.ﬂ- C-& ci‘o;o\ = 4
"

~ + 0 1} 4 {
-— - C - . - . - . . -
6 =c¢;% 0 dh;\_ (o‘o“\cJ ¢y < C“o"o‘l\
Pairing: 6 = C:(C

When applying such an operator

to a generic state, line crossings appear.
These yield additional signs, which

can be tracked using rule (ii).
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Parity changing tensors

cﬁ’ and C

change parity; but rule (i) demands: use only parity-conserving tensors!

Remedy: add additional leg, with index taking just a single value, §:= [ with parity P(g) = ()

which compensates for parity change induced by ¢ or

s IR ()

+
56’
§ only nonzero
2 i element:

Total parity: 'Pss\ic. = P(%)P(G:‘-)P(ﬂ) = C-V*‘)(—\ = ()
d

{
! e
¢ o = (C',,) ‘
te!
6;
Total parity: T 6§

{

Two-site operator
is represented as

Since !S

c:C

only nonzero

GLS element:

x+'-

1.

C.

L

o

R

-—
-

4
o\c ¢ oy =

= pEVR(G)p(8) = () = )

4 +6: —+6I

R S N S b

{ e I
- ! Agi

can be simplified to a parity operator acting on latter:

_+6'
_%7_8
4

—|6

—

o +
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carries just a single value, a SWAP gate involving crossing of $ -line and physical & -line




3. Jump move

Because all tensors by construction preserve parity,

lines can be 'dragged over tensors':

(Shorthand: (6 = P; )

[Corboz2009, App. C], [Corboz2010b, p. 9]

F-PEPS.3

‘ P \ P
? 4\ 1) \@
?LX ' Ps = ?3 / ?b
P P

before jump after jump
This is trivially true for p"= )
since then all swap signs are + S(p;/ +) = (%) forall  p;
Consider P' = (-):
¥ "
2-leg tensor: = ~_ [%
both legs have W- - -
same parity ?
?
SWAP sign: 5(?, -) =
|3 P
3-leg tensor: B = .
\ e ) - -
l?r?t
SWAP sign: (Pr,p0) S’(?'.Pz,-\ 5(‘)(1 =) S(p= ~)
U B COR IS S(+,- )S(= ) = @) =€)
.-."\‘ S("'/"‘) = ("') S(-—/- )S(.\./f ) = (a)(.rs :(_)
bt S(+ =) = ) S(+,-)s(+ -y = @) = W)
~-- S(+’—) = (+) S(“"")S("" ,") = X-)= )

General argument: parity-preserving tensor has even number of minus-parity lines:

= T S(’fu,-)T S(’f‘;,-')

oL & before F & after

Jeuw

(-)eﬁf -

total number of
minus-parity lines,
which is even

(sign)before *  (SigN)after

"

all minus-parity legs
cut by 'before' line

all minus-parity legs
cut by 'after' line

-3 v

(sign)before = (SigNn)after

Jump move allows tensor network diagrams to be rearranged according to convenience:
} 4

Page 6

(+)




4. MPS examples [Bruognolo2017] F-PEPS.4

Nearest-neighbor <1H C_{; Cy | 1D =

expectation value
needs no swap gates:

Time evolution of

non-r.\earest-neighbor it Lo “"C’T)/j
hopping operator: (1\(’. (s ¢ Lt/ =

L/
Due to jump moves, the \——“——9

red line and light brown lines

effect as

Jordan-Wigner

string

connecting (, and C;
are equivalent (use one or the other)

Fermionic order in a PEPS

Choose some ordering for open indices and stick to it!

03,0 1022} [075) 1030} 1025} lote) losd lo3s) 105

ig:.s) {
CAPPRNN G B U B PV I Y B L)
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Absorbing SWAP gates




