NRG IV: Dynamical correlators NRG-IV.1

Goal: computing spectral functions via Lehmann representation using complete basis.

1. Completeness of Anders-Schiller basis [Anders2005], [Anders2006]

D
The combination of all sets of discarded states constructed in (NRG-IIL.5), { | 0 e>£ | {= 1,,'," N i

forms a complete basis in full Hilbert space of length-N chain, known as 'Anders-Schiller (AS) basis':
@(proof follows below) .
— exact basis

by definition

- - transformation )
ZJ&U')(@M = :L(N 2" = ZZ [d)e? < el ()
Sy ¥ L «ep
These basis states are approximate eigenstates of Hamiltonian of length-N chain:
" XY )
Ho Tnehy = HY [we), = E7 (%), (2

A
Here we made the 'NRG approximation': when acting on states from shell £ , approximate l»l“
by ]’:‘ l', i.e. neglect later-site parts of the Hamiltonian. Justification: they describe fine structure not
relevant for capturing course structure of shell £ . The AS basis thus has following key properties:

» For small ( , energy resolution is bad, degeneracy high.

«As f increases, energy resolution becomes finer, degeneracy decreases.

Projectors:

_ Ay X x lel®ix e
Projector onto PL = 2 lweY Sue| = Jax 1] (13)
«e L kU \4}/ e

sector ¥ of shell { :

K and D sectors partition shell into two

! xlx py¥
disjoint sets of orthonormal states, hence PL ﬁy = S (OL )
Refinement of K sector of shell ¢: 13 < - pP° px “ < 2
' L - [V ORRRY X% 2 e (1s)
~ D /,\:Dx’:
Iterate until end of chain: = ?LH t Pﬂn = fﬂ = .. A
174 U
K X o K D
Hence: FQ = 2 Ph, = 2, PU A ?lu = Z, P 2! (&)
(forany £">¢) * tyL Ry
D K .N 0
For [ = /(o A 40"'(” = pf.o ~ Pco = Z_ Pg g
L=4,
e~
=2
2
Unit operator can be expressed as sum over D-projectors of all shells, hence AS basis is ciomplete!
1 ‘ %Kx' P g),( if Lz A
X y (a3 /
General projector products: ’(3[’ Pg = ) gx ¥ 'Pz if l‘: yé (ra)

! ]
sz' $XK if /(>£
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Graphical depiction of completeness of AS basis

ﬂ'd"x&" =Z +@"'@+ ® + ®+ ® \ \ ®+

- 4
shorthand system

Y 'h‘f zo lvf' [,4-7, (\}

Transform to basis which diagonalizes sites “p to l o , keeping (K) the full spectrum at each step):

= 22 K K (K
o Qg Ve K btk u® \ l \, .- [ |
9 ‘(qf £° lv'ﬂ ﬂ""L ”
Split into discarded and kept states. In latter sector, move one site from environment into system:
D
= Z 1 1 K L
Zez.‘ —h I N
split 'Mf ,fo [,,ﬂ lo s N
+
s [{ L
3> _DMK(Z) ]@ I U
& Q.z‘ 1 I
t_'(nf &, ?.,,.‘ ﬂon, v

g \ v —
larger system

Now diagonalize, split again, and iterate:

324 JK‘K

\
IHD®
P on_“ ‘\ T X ' K | r; ﬂ ( ( A ‘ L
split + o Lot "
% s L Ky Ko K
e \ ) [} lj ‘S ‘ \ - e . ‘ ‘
B a0, K K 0
tup Lot ot N
Iterate until the entire chain is diagonal, and declare all states of last iteration as 'discarded":
n +
(4 ! \ [N K o
Z Z ) I\ \ | N N ) le l
X ‘1 €o- ‘tne < N-t N
D 4
‘ ‘ A A
D — ——— D
A g K

is the resolution of identity in AS basis:

- zZif‘,“‘(;ﬁ,uo@ I S
£;4 ﬁ‘(ne Kﬂ ﬂ*l N
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2. Operator expansions [Weichselbaum2007], [Peters2006] NRG-IV.2

non-tr|V|aI only on sites —¢, ... s

Below we will show that the Hamiltonian and 'IocaI' operators have following structure in AS basis:

-
“213 .\l R
M D E[ll K

He,
1
l
2133
t]

[volvd

D
Hts}b

K
B g

g J II

Hamiltonian is diagonal: General operator: exclude KK to avoid overcounting!

02) A _ FEKK .
ZZ E'e t0(€,> :D<4(€| B = %. % Z |ue\3( [B[HX] g<°‘)el )

(]
Operators are diagonal in 'environment' states! Hence environment can easily be traced out!

n A
The expression for H V' follows from (IV.1.2). That for a local operator 3 can be found as follows:

A
Suppose 3 isa 'local operator!, living on sites < £, , e.g. on sites "”“f and o

6cmp Go

A l\fi‘

B ®+®...@+ © + o} o . ®t e
bl G Ok Sei  Beurn O

Start from the local operator's exactly known representation on length- 4 o chain,

B -3 lwed [y, jﬁ"‘e‘ =2 By, “

)‘x C{K S [ X/X

Define operator projections to X'X sector of shell

dk L w « A

T « K‘é—.X(
Lyl \

, |
~ x _
Brey g = T t ,\IU T v @y
r¢ bt k f_py’ 1 { (no hat: matrix elements)

with matrix elements

0 X ¥ > X
{
BY. f = y - )
(@]\I ! o ~ KID(‘

X/ =< <y

ﬁ
N
r
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can be computed iteratively during forward sweep, starting from £ = £,

L , ¥
K | K ¥ (g & \pe
S[C"-i\( ‘ L‘z / = Kﬂm k) ] (B[l-llkk p{A[E\ x\ ®)

—O—

1%
only KK enters here! /" € X nfv
i
Refine KK sector iteratively, using Pel (I ") Z tx
+
A FKE r 1 S
K - ~ K A N ({ 3 X A x P K ,,l(
B [leK PIvo 6 P£° - %;( Peou B P‘c*l ¢ Pfo-n & ploﬂ (">
: N FKK ntn A N FEE
Iterate to end of chain: = X LI (o
2 Z; Pl & e - 2 z 5[«1 x i
Lahe X'x Lrhe x'x
a ax ) N EKE L KK y
Full operator: B = Z E[M,‘ = 2 E 5[¢3x = Z Z :} 1 H \ (ts)
% L3he x'x £ x'x A *

Note: matrix elements are always 'shell-diagonal' (computed using same-length chains).

Time-dependent operators

A N - EKE A o
B(L) = ecH t 2 e-c“ t ) % S Bf‘x])(“) )
X%

\

with time-dependent matrix elements, evaluated using NRG approximation (1.2):

|
(H" 4 —(H['t Y _ {B x ‘a‘ ei(Ei"‘Eu){'
o

B x! {.ld‘ . y< ,‘ |D(> (13)
(n,( | ¢ el ¥

Important: since we |te;rat|vely refined only KK sector, the time-dependent factor is 'shell-diagonal':
factors with € ¢ {E t £ # 4 do not occur. Using different shells to compute

E,' and E ,would yield them with dlfferent accuracies, which would be inconsistent.

('2 13) *KK A

Fourier transform: 12/ 4) jd{‘ it g B(4) = Z Z__ B[t]x(‘)) ts)
B, = Bl |7 Sl - @k - el (re)
Operator product expansions: B C Proceed iteratively, refining only KK-KK sector:
5 K" "K" (:m) X x'aax . Aoyl oy
Bf“ l(C f!l K 2 L ; “ ?QH - :Z K[QH}\L'C’[CH\X )
X X X Xxx"
Start from ﬂ a,&, and iterate: ((9)
4 A A X” A x! # KkK N on xl # KKK C X
BC = Breaw Cioly = 2. B iC = g
X"x'x [ (ol £ x"x'x (e £ x"x'x 5 Xt
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3. Full density matrix [Weichselbaum2007] NRG-IV.3

A NRG approximation

n el
paefH 2 Lz%euo F7r Zue) z ——hll

‘\f"iz — ¢
£
feip
_ Y e B
B ,e.fno fftl'l) 4 [PI(.] Dl 2 (63

"

A ] A
Sector projections of ﬁ for shell ¢ , defined as f)ie)]( x = Pe# j‘) PEX , are given by:

A D aK (IM N FD ~ .k .
= = 0
provides refinement for rest of chain density matrix is sector-diagonal

Reduced density matrix for length- ﬂ chain is obtained by tracing out environment of all later sites:

0 &

A
P Ay (-— S
[ - (i
f” ¥ 51-45 Yy, f[qv] f)“D J°re1-<

d N-£  degeneracy of environment for shell ,e

D
- D
T8 R @
4

) )

DD-sector:

—A—
a0 D g
f[e] D - ™ T Dj\{u])
)

indicates sum over local

h

basis due to trace (no hat: matrix elements)
with matrix elements ¢
Ey n-£
> L@ e -f 24 0
= 4
[f“mol [/me\ M 5 « & e d
D
Ry B
2 “4
D - BE, * density matrix of relative weight of
where Z L -~ D-sector of shell e D-sector of shell 8
o (without environment) to total partition function,
is partition function for D-sector of shell £ with 220 =
(without environment) e ¢

KK-sector:
r 000,

L Z ' G - Y 35 e
f[e] K = 1 \—q—ﬂ—j P@]D% (1 B F[CIK
P'sp € 1 ZK \, U - (A é i<

P(e']])
f Kot x .
[f)mkl“ k' A4 Koﬁm P{qu - ZX et (J 4] x

Startingat { = A/, the KK matrix elements can be computed iteratively via a backward sweep.
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thermal

2J, suppression
The weights ""I, , viewed as a function of L , £ A counting

are peaked near /(T , with a width of five to ten shells - suppression

¢ L4
i T
(depending on A ‘ 4 and 'an‘,f ) zv"l'
- EL -
Reason: the Boltzmann factors ¢ Is S in partition | — 2
functions yield & ¢ for £ 52 ss T oor =~ | Lt
for E,f << T . Hence
4 ~(£-2
- n-4 - _BE -2 - B (2-9
(z>d 121;' @ d Z&Fu AN zC F/\ ETl”f [
e = = ey ¥ =d e @
E e ~fEu > 2
e' ”‘Ie, £‘>£T e'l
e alN'Z"'
sum over environment of shell [ 7 yields -

Thus, the weight functions ensure in a natural manner that shells whose characteristic energy lies close to
temperature have dominant weight, while avoiding the brutal single-shell approximation 402 = s,‘ e

Thermal expectation value: Sx" due to trace
. . @.19) a - X
(8% = Tl[58] =" Z W Arege Bred y | (o)
definition shell- £, X" XX A
representation @) 5)(;'

c, operator trace

= Z [ﬁ [2s) « B[1.,] x\ = Z [f[&] X B[zr,,] xl ()

¥ all S|tes /f X 5|tes <0,
X
¥ (2
C \

trace out all sites £ > £,
race out all sites € < £,

X
K
X
| t
(close the zipper)

<

W matrix trace

—_ X X ~ ;
— Zsr: {,[ﬁm] xS Y] i >< jD[&] xk [Bm ‘u' ts)

can be computed using solely shell- Z, matrix elements
(but reduced density matrix requires backward sweep along entire chain)

Note: traces of shell-diagonal operator products simplify to traces of matrix products,

with full density matrix replaced by reduced density matrix.
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4. Spectral functions: full-density-matrix (fdm) NRG NRG-IV.4

[Weichselbaum2007] [Lee2021]
AS basis, being complete set of (approximate) energy eigenstate, is suitable for use in Lehmann
representation of spectral function, with the identification floz)g = § |$c)l,>,‘ , M=v, . Ng
(NRG-IL.1) A
RC . A A _
4%\ = 14} ot T [p 8] = Teldw Cp]
7

trace is cyclic

Insert representation of these three operators in complete AS basis:

—

T«[ZZZIx (Bu][w) } ¢< ;Ei [C{g'fiz

X X #+= KK 'Y 4Kk

Looks intimidating, but can be simplified by systematically using (NRG-III.5.12) for overlaps.
Simpler approach (leading to same result) uses operator expansion (2.18):

)4@(2\ = Tr[8W) (6{3)] ZE’« Tf[B(q(w\ x! (Cf)fel'x ]

x"x'x

xIl
trace is cycI|c 5 X

Perform trace in same way as for thermal expectation value, (3.10): trace over sites ¢ '> £ vields

]
reduced density matrix, trace over sites ¢ ¢ £ yields matrix trace over shell { :

# KK _ |
A% = 27 e [Bue e CF )l o |
£ X% ey
# KK 4 ¢ L x! X o
= Z. Z.. Z‘B(d !X o' g(w'ﬁa‘—ed)) [C[ﬂ ¥ .PFQJX] «

resolves frequency at scale ()~ A~ U

Each term involves a trace over matrix products involving only a single shell.

Easy to evaluate numerically. 2 ¢

To deal with delta functions, use 'binning':

()

| ;42,5 U”‘,&i U’mb ’D}“u I&«,e\} @)

()

partition frequency axis into discrete bins, I £,

centered on set of discrete energies, ‘{g l, and replace I

S(‘“’"E) by S("‘)"é)’-‘ifE({-I :—: -+

2 .

weight per peak weight per bin

This assigns energy ¢ to all peaks lying in same bin.

Finally, broaden using log-Gaussian broadening kernel, (NRG-III.3.4).
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(at particle-hole symmetry, ¢d =- U[z

Spectral function of Anderson impurity model
and zero magnetic field, o )

f

¢
/45(‘0) - Ad’ds/_w\ . /44(5/5 (e))

Can be computed using fdm-NRG. Technical issues:

- Include Z-factors to take care of fermionic signs.
- Broaden final result using log-Gaussian broadening kernel (NRG-IIL.3.4).

Result: for [/ << | (eg.=0.1) and T <2« Tx (e.g. = 0), one obtains

T/Tg =0 |

- NRG correctly captures width of central peak

T // around # =0 , the 'Kondo resonance'.

NRG overbroadens the side peaks,
/ which lie at high energies.

A('W‘)/ﬁ(o)
|
|

0.5

—— The true form of side peaks is narrower.

1 _0'.5 (') 05 1 Over-broadening at large frequencies can be
reduced using 'adaptive broadening' technique

w [Lee2016].

T[FAS(C\I :'-°> = 1

<ot d i Dknft is large enough.

Exact result for peak height at T=0:

NRG reproduces this with an error of

With increasing temperature, Kondo resonance broadens and weakens as | approaches and passes T.

T/Tx |

1f T/Tk 1
0 0
0.1 0.1
— 1 1
D
§ 10 2 10
X 100 hod 100
3 . )
?'i/ 0.5 ;z/ 0.5
0 L 0 L . . L "
-1 0.5 0 0.5 1 1072 1071 100 101 102
w u)/TK
Sum rule: we expect (for any temperature): )
—

de 45(“’) = <dt”{5>‘r * <‘AS 0{: >T = <{0(g,0($f3\>_r = (.

-5
Due to use of complete basis, f{dmNRG fulfills this sum rules to machine precision, with error £ ro ‘
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