- The Density Matrix Renormalization Group (DMRG) was invented by Steve White (student of Ken Wilson) to solve general quantum chain models. [White1992], [White1993]
- First realization of connection between MPS and DMRG in limit

 ∴ : Ostlund & Rommer [Ostlund1995]
- Realization that finite-size DMRG leads to MPS: Dukelsky, Martin-Delgado, Nishino, Sierra [Dukelski1998]
- Modern formulation: Vidal [Vidal2003], [Vidal2004], Cirac & Verstraete [Verstraete2004]
- Time evolution: Daley, Kollath, Schollwöck, Vidal [Daley2004], White, Feiguin [White2004]
- Connection to NRG: Weichselbaum, Verstraete, Schollwöck, Cirac, von Delft [arXiv:0504305], [Weichselbaum2009]

1. Iterative ground state search

View space of all MPS of given bond dimension, D, as <u>variational</u> space.

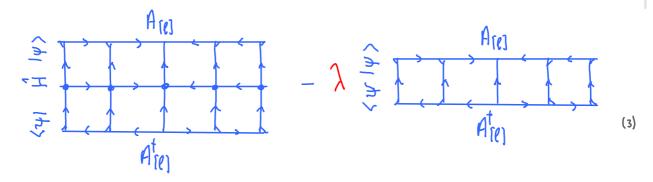
Minimize $\langle \psi | \hat{H} | \psi \rangle$ in this space, subject to constraint of unit normalization, $\langle \psi | \psi \rangle = (...)$

Hence extremize

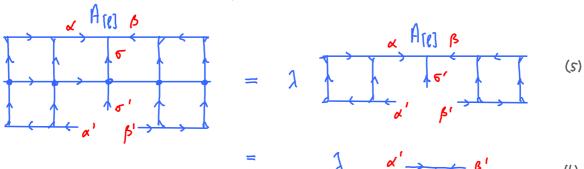
$$\langle 4|\hat{H}|4\rangle - \frac{1}{2}\langle 4|4\rangle$$

Lagrange multiplier (2)

Graphical representation, assuming mixed-canonical form w.r.t. site ℓ :



$$\frac{\partial \theta_{\mu}^{[6]}}{\partial x} \left[\langle \lambda | \hat{H} | \lambda \rangle - \gamma \langle \lambda | \lambda \rangle \right] = 0 \qquad (4)$$



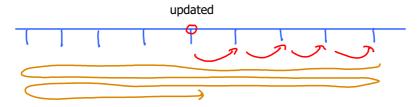
close zippers from left and right

In the notation of (MPS-V.3.11):
$$-\frac{\alpha}{\alpha} A_{\ell\ell}^{\alpha} = \lambda A_{\ell\ell}^{\alpha'}$$
 with $\alpha' = (\alpha', 6', \beta')$

This is an eigenvalue equation for $A_{[\ell]}$ and can be solved with standard linear algebra tools, e.g. Lanczos algorithm (next section).

More generally: if $|\Psi\rangle$ is not represented in mixed-canonical form, one obtains a generalized eigenvalue equation of the form H = N = N = 0, with N = 0 defined by r.h.s. of (5).

Use that 'eigenvector' $A_{(\ell)}$ yielding lowest eigenvalue (= current estimate of ground state energy) to 'update' MPS, then move to next site, switch to mixed-canonical form of site $A_{(\ell+\ell)}$, etc..



'Sweep' back and forth until convergence of ground state energy has been achieved. This works remarkably well for 1D chains with short-ranged interactions.

DMRG-I.2

- Fast way of finding extremal eigenvalues of an Hermitian NxN matrix,
- Prerequiste: an algorithm for computing $| \cdot | \cdot | \cdot | \cdot |$, for any vector $| \cdot | \cdot | \cdot | \cdot |$.

We seek the extremal value of
$$E[|\psi\rangle] = \frac{\langle \psi| H|\psi\rangle}{\langle \psi|\psi\rangle}$$
 (1)

Denote extremal value by
$$E_{S} = \min E[14] = E[14]$$
 (2)

The direction of steepest ascent of the functional (), evaluated at), is given by

'functional gradient':
$$\frac{\delta \in [14)}{\delta < \psi} \equiv \frac{H(4)}{\langle \psi | \psi} - \frac{\langle \psi | H(\psi)}{\langle \psi | \psi \rangle^2} | \psi \rangle \tag{3}$$

$$= \frac{H - E[14)}{\langle +14 \rangle} | 14 \rangle = | 14 \rangle \qquad (4)$$

Moving in opposite direction will thus lower the energy:

$$E[|4\rangle - \alpha |4\rangle] \subset E[|4\rangle]$$
 for small, positive α (5)

To find optimal value for α , minimize $\mathbb{E}\left[\frac{1}{4}\right] - \alpha \frac{1}{4}$ w.r.t. the 'variational parameter' α , in the space $\mathbb{K}_1 := \text{span}\left[\frac{1}{4}\right], \frac{1}{4}$ = $\text{span}\left[\frac{1}{4}\right], \frac{1}{4}$ = $\text{span}\left[\frac{1}{4}\right], \frac{1}{4}$ (6)

Starting from the random initial state $|\psi\rangle$, construct a normalized basis $\{|v_0\rangle, |v_1\rangle\}$ for this space:

First basis vector:
$$|v_o\rangle := \frac{|\psi\rangle}{\sqrt{\langle\psi|\psi\rangle}}$$
 (7)

Now find a matrix representation of H in this space: define

$$\alpha_{\bullet} := \langle v_{\bullet} | H | v_{\bullet} \rangle \qquad \alpha_{i} := \langle v_{i} | H | v_{i} \rangle \qquad b_{i}^{2} = \langle \widetilde{v}_{i} | \widetilde{v}_{i} \rangle \qquad (4)$$

then $\frac{(3)}{4 (v_0)} = (v_1) b_1 + (v_0) a_0$ (11)

hence in the space $\mbox{\ensuremath{\mathsf{K}}}_1$, the Hamiltonian has the matrix representation

$$H_{K_{I}} = \begin{pmatrix} \langle v_{o} | H | v_{o} \rangle & \langle v_{o} | H | v_{i} \rangle \\ \langle v_{i} | H | v_{o} \rangle & \langle v_{i} | H | v_{i} \rangle \end{pmatrix} = \begin{pmatrix} a_{o} & b_{i} \\ b_{i} & a_{i} \end{pmatrix}$$
(12)

The ground state of \mathcal{K}_{κ_1} , say \mathcal{K}_{κ_2} , yields the optimal choice for κ .

Now we could iterate: use $\frac{1}{5}$ as starting point for another optimization step. Convergence is rapid. Monitor quality of result by computing the residual energy variance,

$$\tau[147] \equiv \| (H - E)|47 \|^2 = \langle 4|H^2|4\rangle - \langle 4|H|4\rangle^2$$
 (13)

and stop when it drops below some threshold.

Krylov space

After \cline{l} steps, starting from $\cline{v_0}$, the resulting vector will live in

$$K_{L}(|V_{0}\rangle) = span\{|V_{0}\rangle, H|V_{0}\rangle, H^{2}|V_{0}\rangle, ..., H^{L}|V_{0}\rangle\}$$
 (4)

= 'Krylov space of H over $|V_{0}\rangle$ ' (dimension $L+1$). (15)

Instead of repeatedly minimizing in 2x2 subspaces, we could $\underline{\text{first}}$ construct $\mbox{\ensuremath{K_L}}$, $\underline{\text{then}}$ compute its ground state. (This is faster, since it amounts to using <u>simultaneous</u> variational parameters

As before:
$$b_1 | v_1 \rangle := | \widetilde{v}_1 \rangle := H | v_0 \rangle - \alpha_0 | v_0 \rangle$$
 (16)

As before: $b_1 | v_1 \rangle := | \widetilde{v_1} \rangle := \| | v_0 \rangle - \alpha_0 | v_0 \rangle$ normalize $b_2 | v_2 \rangle := | \widetilde{v_2} \rangle := \| | v_1 \rangle - \sum_{i=0}^{1} | v_i \rangle \langle v_i | H | v_1 \rangle$ (17)

$$= H | v_i \rangle - | v_i \rangle \alpha_i - | v_i \rangle b_i^*$$

$$(8)$$

$$= || ||_{\mathcal{V}_{1}} \rangle - ||_{\mathcal{V}_{1}} \rangle |_{\alpha_{1}} - ||_{\mathcal{V}_{0}} \rangle |_{\beta_{1}}$$

$$||_{\alpha_{2}} \rangle ||_{\alpha_{2}} \rangle |$$

Note:
$$\langle v_2 | H(v_0) = 0$$
, since $H(v_0) \in Span \{|v_0\rangle, |v_1\rangle\}$ (26)

Fourth vector:
$$b_3 | v_3 \rangle := | v_3 \rangle := | v_3 \rangle := | v_3 \rangle \langle v_3 | | v_3 \rangle \langle v_3 | | v_4 \rangle \langle v_3 | | v_4 \rangle \langle v_5 | v_5 \rangle \langle v_$$

Thus we obtain a two-term iteration scheme: we need to store only 3 vectors at a time!

nth step:
$$\int_{\mathbf{u}_{+1}} |v_{\mathbf{u}_{+1}}\rangle := |\widetilde{v}_{\mathbf{u}_{+1}}\rangle := H|v_{\mathbf{u}}\rangle - \sum_{j=0}^{n} |v_{j}\rangle\langle v_{j}| H|v_{\mathbf{u}}\rangle$$
(23)

with
$$a_n := \langle v_n | H | v_n \rangle$$
 $b_n = \langle v_n | H | v_{n-1} \rangle$ (25)

[If it happens that $b_{n+1} = 0$, pick an arbitrary $|v_{n+1}|$ orthonormal to all $|v_j|$, j = 0, ..., n.]

Throughout we have:
$$\langle v_n | H | v_j \rangle = 0$$
 for $j = 0, ..., n-2$ (26)

since

Hence, rearranging (24):
$$H(v_n) = |v_{n-1}\rangle b_n + |v_n\rangle a_n + |v_{n+1}\rangle b_{n+1}$$
 (28)

Hence, in K_{i} ,

H has tridiagonal form:

$$H_{K_{L}} = \begin{cases} a_{0} & b_{1} \\ b_{1} & a_{1} & b_{2} \end{cases}$$
 $b_{2} & a_{2} & b_{3} \\ b_{3} & a_{3} & \ddots & \vdots \\ a_{L-1} & b_{L} & b_{1} & a_{L} \end{cases}$

Ground state of H_{K_L} satisfies the eigenvalue equation $(H_{K_L})^i (Y_g^i)^j = F_g^i (Y_g^i)^i$

$$(H_{K_L})'_j (4g')^j = E_g^L (4g')^i$$

Thus

$$E_g^L$$
 and $|\psi_g^L\rangle = \sum_{i=0}^L |v_i\rangle \langle \psi_g^L\rangle j$

are the best approximations, within the Krylov space \mathcal{K}_{L} , of true ground state energy and ground state.

Note: $\left\langle \psi_{\zeta}^{C} \right\rangle$ can be constructed 'on the fly', one term at a time, by restarting Lanczos iteration from $\left| \psi_{\delta} \right\rangle$

Summary

- 1. Start with arbitrary (V5)
- 2. First iteration step: (i) $|\tilde{s}| = H(v_0)$
 - (ii) $\alpha_{o} = \langle \widetilde{\widetilde{v}_{i}} | v_{o} \rangle$
 - (iii) $|\widetilde{v_i}\rangle = |\widetilde{\widetilde{v_i}}\rangle a_o |v_o\rangle$
- 3. General iteration step, for $\aleph > 0$:

 - (ii) If $b_n \pm 0$, then $(v_n) = |\widetilde{v_n}\rangle/b_n$

else, pick $|v_{N}\rangle$ as arbitrary normalized vector orthogonal to all $|v_{N}\rangle$

- (iii) $|\tilde{v}_{n+1}\rangle = H|v_n\rangle$
- (iv) $a_n = \langle \hat{v}_{n+1} | v_n \rangle$
- $|\widetilde{\mathbf{v}}_{n+1}\rangle = |\widehat{\mathbf{v}}_{n+1}\rangle |\mathbf{v}_n\rangle \mathbf{a}_n |\mathbf{v}_{n-1}\rangle \mathbf{b}_n$

and back to 3(i).

There are other ways of organizing this iteration loop, but the one shown here is numerically the most stable. [Paige1972]

3. DMRG for excited states

DMRG-I.3

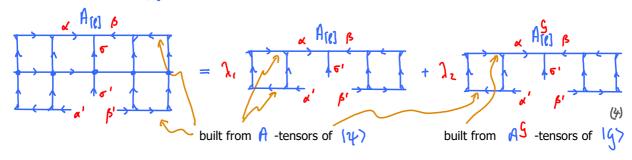
Suppose we have an MPS representation for ground state, $(g) = (\vec{\sigma}) \prod_{\ell} p_{(\ell)}^{g \sigma_{\ell}}$

found by DMRG. Excited states can be constructed repeating a DMRG sweep in space orthogonal to 19>.

Extremize: $\langle \psi | H | \psi \rangle - \lambda_1 \langle \psi | \psi \rangle - \lambda_2 \langle \psi | \psi \rangle$ (2)

Lagrange multipliers enforce $\langle \psi | \psi \rangle = 1$ and $\langle \psi | g \rangle = 0$. (3)

Extremization w.r.t. $A_{1(1)}^{\dagger}$ yields



Generic structure of this equation, in mixed-canonical representation of site ℓ [compare (DMRG-I.1.7)]:

$$H^{a'} = A^{a} = \lambda, A^{a'} + \lambda_z G^{a'} \quad \text{with} \quad A^{\dagger} = \lambda, A^{a} = \lambda, A^{a'} = \lambda, A^{\dagger} = \lambda,$$

$$g^{a'} = g^{a'\sigma'\beta'} = L_{[\ell-1]}^{\alpha'} A^{\beta}_{[\ell]} R_{[\ell+1]}^{\beta'}$$

with $\[\]$ and $\[\]$ computed iteratively,

$$L_{[e]} = A_{[e]}^{\dagger} = A_{[e-1]}^{\dagger} = A_{[e]}^{\dagger} \times A_$$

Index-free notation for (5):
$$HIA \rangle = \lambda_1 IA \rangle + \lambda_2 IG \rangle$$
 (8)

Define projector onto subspace orthogonal to
$$\frac{1}{5}$$
: $\frac{1}{5} = \frac{1}{5} - \frac{1}{5} = \frac{1}{5}$

[with indices:
$$P_g^{a'} = 1^{a'} - G^{a'} G^{\dagger}$$
, so that $P_g^{a'} G^{a} = 0$] (10)

$$\frac{(8) = 0}{P_{S} H P_{S} (A)} = \lambda_{1} P_{S} (A) \qquad (12)$$

This is simply an eigenvalue problem, for $ho_s H$, in subspace orthogonal to \ref{sol} . It can be solved using straightforward generalization of Lanczos scheme, using Krylov subspace orthogonal to $\frac{1}{4}$: Given an arbitrary initial state $|v_0\rangle$, project it onto orthogonal subspace, $|v_0\rangle$ = $|v_0\rangle$, and construct new Krylov vectors using

$$|\widetilde{v}_{n+1}\rangle = P_g H (v_{n+1}) - |v_n\rangle a_n - |v_{n-1}\rangle b_n^* \qquad (14)$$

Why not simply use excited states in $\mbox{ K}_{\mbox{ }}$? Because numerical noise can cause the $\mbox{ Iv}_{\mbox{ }}$ $\mbox{ }$ to be not exactly orthogonal, hence for $\sqrt{\sqrt{3}} < \sqrt{3} = \sqrt{3}$ rather than 0.

This leads to spurious multiple copies of eigenstates ('ghost states'). For the ground state, the variational principle ensures that the loss of orthogonality does not become a severe problem. But for excited states, it \underline{does} . To prevent this, explicit reorthogonalization is needed at every step, using $\frac{1}{\zeta}$, as indicated above.

Block-Lanczos for excited states

Standard Lanczos: represent action of H as

Standard Lanczos: represent action of H as
$$H(v_0) = (v_0) A_0 + (v_1) b_1 \implies$$

Block-Lanczos: start with set of M orthogonal vectors,

 v_0 , v_0 , and represent action of H as

$$\begin{aligned} &H\left(\upsilon_{0,i}\right) = \left|\upsilon_{0,i}\right\rangle \mathbf{1}^{j}; \left(\alpha_{1}\right)^{i} + \left|\upsilon_{1,j}\right\rangle \left(b_{1}\right)^{j}; \\ &\text{with} & \left\langle\upsilon_{0,j}\right|\upsilon_{1,i}\right\rangle = 0 & \left\langle\upsilon_{1,j}\right|\upsilon_{1,i}\right\rangle = \mathbf{1}^{j}; \\ &\text{and} & \left(\alpha_{1}\right)^{i} = \left\langle\upsilon_{0,i}\right|H\left(\upsilon_{0,i}\right), & \left(b_{1}\right)^{j}; = \left\langle\upsilon_{1,j}\right|H\left(\upsilon_{0,i}\right). \end{aligned}$$

etc. Then the lowest M eigenstates of block-tridiagonal matrix give the Lanczos approximation for lowest M eigenstates of H

$$\begin{bmatrix}
a_{o} \\
b_{i}
\end{bmatrix}
\begin{bmatrix}
b_{i} \\
b_{i}
\end{bmatrix}
\begin{bmatrix}
b_{1} \\
b_{2}
\end{bmatrix}$$

Page 8

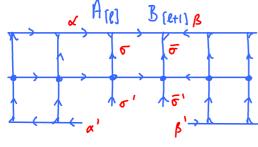
If one encodes symmetries (see Sym-I to Sym-III), then 'one-site update' (discussed above) can get stuck: if one starts in the wrong symmetry sector, one stays there, because one-site update offers no way of enlarging the Hilbert space during the variational search to explore other symmetry sectors. Cure: 'two-site' update, which variationally optimizes two A-tensors at a time.

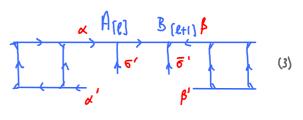
Represent MPS in mixed-canonical two-site basis:

H[[] 5[[+1]]

Then extremize simultaneously w.r.t.

$$\frac{\partial \mathcal{B}_{t}^{[\ell+\ell]}}{\partial \mathcal{A}_{t}^{[\ell]}} \left\{ \langle \mathcal{A} | \mathcal{H} | \mathcal{A} \rangle - \lambda \langle \mathcal{A} | \mathcal{A} \rangle \right\} = 0$$



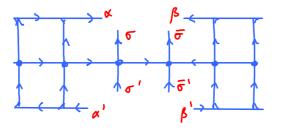


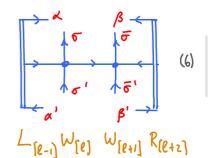
Compact notation:

$$H^{a'}_{a} (AB)^{a} = \lambda (A$$

 $H^{\alpha'}_{\alpha}$ $(AB)^{\alpha} = \lambda (AB)^{\alpha'}$ with composite index $\alpha = (\alpha, 6, \overline{6}, \overline{6})$

and





51

(7)

Use Lanczos to find lowest eigenvalue of eigenvalue equation (5), and reshape updated (AS):

updated

$$(\overrightarrow{AB})^a$$
 reshape

$$(\overrightarrow{AB})^{a}$$
 reshape $\alpha, \overline{\sigma}$ $\overline{\sigma}$ \overline{B} \overline{S} \overline{V}^{\dagger} $\overline{\sigma}$ \overline{B} \overline{D} \overline{A} \overline{A}

Key point: S has $\mathbb{D}d$ singular values, <u>larger</u> than the virtual bond dimension D of A and B. Hence, it explores a larger state space, in general also including more symmetry sectors!

Truncate down to 1 and reshape:

$$= \frac{\alpha_{,\sigma} \mathcal{U}(\widehat{S})}{\widehat{D}A} \xrightarrow{\mathcal{D}} \frac{\widehat{A}}{\widehat{D}A} \xrightarrow{\mathcal{D}} \frac{\widehat{A}}{\widehat{A}} \xrightarrow{\mathcal{D}} \frac{\widehat{B}}{\widehat{B}} \qquad (8)$$

This concludes optimization of . Now move one site to the right and repeat. Sweep back and forth until convergence of full chain.