Symmetries II: Non-Abelian

Sym-II.1

1. Motivation, review of SU(2) basics	
Consider Heisenberg spin chain: $\hat{H} = \Im \sum_{\ell} \vec{s}_{\ell} \cdot \vec{s}_{\ell+1}$ has SU(2) symmetry.	(1)
Define $\hat{\vec{S}}_{\text{fot}} = \sum_{\ell} \vec{\vec{s}}_{\ell}$, then $\hat{\vec{S}}_{\text{tot}}^{\star}$, $\hat{\vec{S}}_{\text{tot}}^{\star}$, $\hat{\vec{S}}_{\text{tot}}^{\star}$ are SU(2) generators,	(٤)
and $\left[\hat{H}, \hat{S}_{tef}^{2}\right] = 0$, $\left[\hat{H}, \hat{S}_{tef}^{2}\right] = 0$.	(3)
Symmetry eigenstates can be labeled 'spin label' or 'symmetry labe' or 'irrep label' (upper case S) 'spin projection label' or 'internal label' (lower case s), distinguishes states within multiplet 'multiplet label' distinguishes multiplets having same spin S	(4)
with $\{S_{ij}^{*}, i_{j}, s\} = \{S_{*}, i_{j}, s\}$	(5)
$\hat{S}_{ij} S, i_j S \rangle = S(S_{ij}) S, i_j S \rangle$	(6)
$\langle S', i'; s' \hat{H} S, i; s \rangle = \delta^{S'} S \delta^{s'} S (H_{[s]})^{i'}$	(7)
For each \int , we just have to find the reduced Hamiltonian $H_{[S]}^{i'}$ and diagonalize it.	
Goal: find systematic way of dealing with multiplet structure in a consistent manner.	
Reminder: SU(2) basics	
SU(2) generators: $[\hat{S}^a, \hat{s}^b] = i\epsilon^{abc} \hat{S}^c$, $\hat{s}^{\pm} = \hat{s}^{\kappa} \pm i\hat{s}^{\frac{\kappa}{2}}$	(8)
a, b, c $\in \{x, y, z\}$ $[\hat{s}^{2}, \hat{s}^{2}] = \pm \hat{s}^{2}$, $[\hat{s}^{4}, \hat{s}^{-}] = z \hat{s}_{2}$	(9)
Casimir operator: $\hat{\vec{5}}^2 = (\hat{\vec{5}}^k)^2 + (\hat{\vec{5}}^j)^2 + (\hat{\vec{5}}^j)^2$	(10)
Commuting operators: $(\hat{S}_{z}, \hat{S}^{2}) = 0$	(11)
Irreducible multiplet: $\hat{\varsigma}^2(S,s) = S(S+i)(S,s)$, $S = o, \frac{1}{2}, \frac{1}{2}, \dots$	(125
$\hat{S}_{2}(S,s) = S(S,s) \qquad s = -S, -S+1,, S$ Dimension of multiplet: $d_{S} = ZS+i$	(1 3) (14)
Highest weight state: $\hat{S}^+ S, s \rangle = o$ (r_5) Lowest weight state: $\hat{S}^- S, -s \rangle = o$ (r_0) $\hat{S}^- S, -s \rangle = o$ (r_0)	• S

Sym-II.2

<u>\$</u><u>\$</u>"

Irreducible representation (irrep) of symmetry group forms a vector space:

$$V^{S} \equiv spaci{S,s}, s = -S, \dots, S$$
 (1)

Decomposition of tensor product of two irreps into direct sum of irreps:

$$\bigvee^{\mathcal{S}} \otimes \bigvee^{\mathcal{S}'} = \sum_{\substack{\emptyset \in \mathcal{S}'' = |\mathcal{S} - \mathcal{S}'|}}^{\mathcal{S} + \mathcal{S}'} \bigvee^{\mathcal{S}''} = \sum_{\substack{\emptyset \in \mathcal{S}'' \\ \mathcal{O} \in \mathcal{S}''}} N^{\mathcal{S} \mathcal{S}''} \bigvee^{\mathcal{S}''} \stackrel{\uparrow \mathcal{S}'}{\longrightarrow} (2)$$

States in new basis, $[S', s', S, S'\rangle$, are eigenstates of $(\hat{S}_{1} + \tilde{S}_{2})^{2}$ with eigenvalue S''(S' + i) (solowing the states of \hat{S}_{1}^{2} in \hat{S}_{2}^{2} in \hat{S}_{2}^{2} (solowing the states of \hat{S}_{1}^{2} is \hat{S}_{2}^{2} in \hat{S}_{2}^{2} (solowing the states of $\hat{S}_{1}^{2} + \hat{S}_{2}^{2}$ is \hat{S}_{2}^{2} in \hat{S}_{2}^{2} (solowing the states of $\hat{S}_{1}^{2} + \hat{S}_{2}^{2}$ is \hat{S}_{2}^{2} (solowing the states of $\hat{S}_{1}^{2} + \hat{S}_{2}^{2}$ is \hat{S}_{2}^{2} (solowing the states of $\hat{S}_{1}^{2} + \hat{S}_{2}^{2}$ is $\hat{S}_{1}^{2} + \hat{S}_{2}^{2}$ in \hat{S}_{2}^{2} (solowing the states of $\hat{S}_{1}^{2} + \hat{S}_{2}^{2}$ is $\hat{S}_{2}^{2} + \hat{S}_{2}^{2}$ in \hat{S}_{2}^{2} (solowing the states of $\hat{S}_{1}^{2} + \hat{S}_{2}^{2}$ is $\hat{S}_{2}^{2} + \hat{S}_{2}^{2}$ in $\hat{S}_{2}^{2} + \hat{S}_{2}^{2}$ is $\hat{S}_{2}^{2} + \hat{S}_{2}^{2}$ in $\hat{S}_{2}^{2} + \hat{S}_{2}^{2}$ is $\hat{S}_{2}^{2} + \hat{S}_{2}^{2}$ in $\hat{S}_{2}^{2} + \hat{S}_{2}^{2}$ in $\hat{S}_{2}^{2} + \hat{S}_{2}^{2}$ is $\hat{S}_{2}^{2} + \hat{S}_{2}^{2}$ in $\hat{S}_{2}^{2} + \hat{S}_{2}^{2} + \hat{S}_{2}^{$

3. Tensor operators

Consider an SU(2) rotation, $g \in SU(2)$

A spin multiplet forms an 'irreducible representation' (irrep), i.e. it transforms under this rotation as:

An 'irreducible tensor operator' transforms analogously (to bra): $\hat{\mathcal{U}}(3) \stackrel{\sim}{\top} (S,s) \mathcal{U}^{\dagger}(3)$

$$f(q) = \mathcal{D}^{\dagger}(q)^{s} \hat{\tau}^{(s,s')} \qquad (1)$$

Example 1: Heisenberg Hamiltonian is SU(2) invariant, hence transforms in $S = \circ$ representation of SU(2): (scalar) Example 2: SU(2) generators, \hat{S}^{\dagger} , \hat{S}^{-} , \hat{S}^{\dagger} , transform in S = i (vector) representation of SU(2): $\hat{S}^{(S=i,S)} = (\frac{1}{32}\hat{S}^{\dagger}, \hat{S}^{\dagger}, \hat{$

Wigner-Eckardt theorem

Every matrix element of a tensor operator factorizes as 'reduced matrix elements' times 'CGC':

In particular, for Hamiltonian, which is a scalar operator: (S = 0, s = 0)

$$\langle S, i; s \mid \hat{H} \mid S'', i''; s'' \rangle = \underbrace{(H^{S, O} s'')^{i}}_{= (H(s))^{i}} \langle S, s; O, O \mid S'', s'' \rangle \qquad (5)$$

Hamiltonian matrix for block
$$s \xrightarrow{=} (H_{s})^{i} i''$$

We will see: a factorization similar to (4) also holds for A -tensors of an MPS!

$$A^{(S,i_{j},s),(S',s')}_{(S'',i'',s'')} = (\tilde{A}^{S,S'}_{S''})^{i}_{i''} (C^{S,S'}_{S''})^{s,s'}_{s''}$$
(6)

$$\frac{S_{i'_{j},s}}{S_{i'_{j},s'}} = \frac{S_{i}}{S_{i'_{j},s'}} = \frac{S_{i}}{S_{i'_{j},s'}}$$
(6)

Page 3

Why does A-matrix factorize? Consider generic step during iterative diagonalization:

Suppose Hamiltonian for sites 1 to ℓ has been diagonalized:

$$H_{e} = H_{e} = E_{[S]}^{\overline{i}} S_{S}^{S'} S_{\overline{i}}^{T'}$$

$$H_{e} = S_{S}^{T'} S_{S}^{S'} S_{\overline{i}}^{T'}$$

$$(7)$$

Add new site, with Hamiltonian for sites l to $l \neq l$ expressed in direct product basis of previous eigenbasis and physical basis of new site:

Transform to symmetry eigenbasis, i.e. make unitary tranformation into direct sum basis, using CGCs: sums over all repeated indices implied:

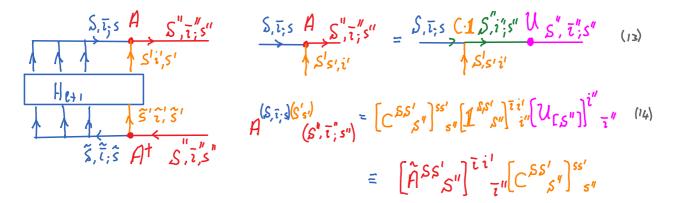
composite index:
$$\tilde{\iota}' = (\tilde{\iota}, \tilde{\iota}')$$

 $|\tilde{\lambda}, \tilde{\iota}', \tilde{s}'' \rangle \langle \tilde{S}, \tilde{\iota}, \tilde{s}' | \tilde{S}, \tilde{\iota}, \tilde{s}' \rangle | \tilde{S}, \tilde{\iota}, \tilde{s}' \rangle \langle H_{L_1} \rangle \langle \tilde{S}, \tilde{\iota}, \tilde{s}' \rangle \langle \tilde{S}, \tilde{\iota}, \tilde{s}' \rangle \langle \tilde{S}, \tilde{\iota}, \tilde{s}' | \tilde{S}, \tilde{\iota}, \tilde{s}' \rangle \langle \tilde{\tilde{s}'} \rangle \langle \tilde{\tilde{s$

Diagrammatic depiction is more transparent / less cluttered:

Now diagonalize and make unitary transformation into energy eigenbasis:

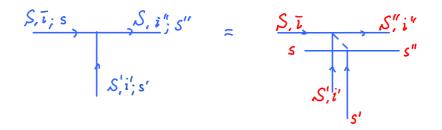
Combined transformation from old energy eigenbasis to new energy eigenbasis:



A-matrix factorizes, into product of reduced A-matrix and CGC !!

(IS)

 $A = \tilde{A} \cdot C$



Sym-II.5

$$\bigvee^{\prime\prime_{2}} \otimes \bigvee^{\prime\prime_{2}} = \bigvee^{\circ} \oplus \bigvee^{\prime} \qquad \circ \xrightarrow{\prime\prime_{2}} \overset{\prime\prime_{2}}{\underset{\prime_{2}}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}}{\overset$$

Local state space for spin $\frac{1}{2}$: $|1\rangle = \frac{1}{2}$, $\frac{1}{2}$, $|1\rangle = \frac{1}{2}$. (1)

Singlet:
$$|S, s\rangle = |o, o\rangle = \frac{1}{\sqrt{2}} (|\uparrow \downarrow\rangle - |\downarrow \uparrow\rangle)$$
 (2)

$$= \frac{1}{2} \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2} - \frac{1}{2}, -\frac{1}{2}, \frac{1}{2} \right)$$
(3)

Triplet

plet:
$$(|1,1\rangle = |\uparrow\uparrow\rangle$$
 (4)

$$|S,s\rangle = \left\{ |1,0\rangle = \frac{1}{52} \left(|\uparrow \downarrow\rangle + |\downarrow\uparrow\rangle \right)$$
 (5)

$$\left(\begin{array}{c} 1 \\ 1 \\ -1 \end{array} \right) = \left(\begin{array}{c} 1 \\ 1 \\ -1 \end{array} \right)$$
 (6)

Transformation matrix for decomposing the direct product representation into direct sum:

$$\begin{pmatrix} \begin{pmatrix} y_{2} & y_{2} \\ [2] & S'' \end{pmatrix} \\ \stackrel{site 2}{} S'' = \langle y_{2}, s_{j}, y_{2}, s' | S'' \\ \stackrel{site 2}{} S'' = \langle y_{2}, s_{j}, y_{2}, s' | S'' \\ \stackrel{site 2}{} S'' = \langle y_{2}, y_$$

Check

Let us transform some operators from direct product basis into direct sum basis:

$$S = \frac{1}{2} \text{ repr. of SU(2) generators: } S_{1}^{+} = \begin{pmatrix} \circ & 1 \\ \circ & \circ \end{pmatrix}, \quad S_{1}^{-} = \begin{pmatrix} \circ & \circ \\ \circ & \circ \end{pmatrix}, \quad S_{1}^{+} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & \circ \end{pmatrix}$$
(7)

In direct product basis, the generators have the form

$$S^{t} = S_{1}^{t} \otimes \mathbf{I}_{2} + \mathbf{I}_{1}^{t} \otimes S_{2}^{t} = \begin{bmatrix} \circ & i \cdot (i_{1}) \\ \circ & \circ & 0 \end{bmatrix} + \begin{bmatrix} i_{1} (\circ i_{0}) & \circ \\ \circ & i_{1} (\circ i_{0}) \\ \circ & i_{1} (\circ i_{0}) \end{bmatrix} = \begin{bmatrix} \circ & i_{1} & i_{0} \\ \circ & \circ & \circ & i_{0} \\ \circ & \circ & \circ & i_{0} \end{bmatrix}$$
(8)
$$S^{t} = S_{1}^{t} \otimes \mathbf{I}_{2} + \mathbf{I}_{1} \otimes S_{2}^{t} = \begin{bmatrix} \circ & \circ \\ 1(i_{1}) & \circ \\ 0 & -(i_{1}(i_{1})) \end{bmatrix} + \begin{bmatrix} i_{1} (\circ i_{0}) & \circ \\ 0 & i_{1} (\circ i_{0}) \\ 0 & -(i_{1}(i_{0})) \end{bmatrix} = \begin{bmatrix} \circ & \circ & \circ \\ i_{0} & \circ & \circ & \circ \\ 0 & i_{0} & i_{0} & 0 \end{bmatrix}$$
(9)
$$S^{t} = S_{1}^{t} \otimes \mathbf{I}_{2} + \mathbf{I}_{1} \otimes S_{2}^{t} = \frac{i_{2}}{2} \begin{bmatrix} j_{1} (i_{1}) & \circ \\ 0 & -(i_{1}(i_{1})) \end{bmatrix} + \frac{i_{2}}{2} \begin{bmatrix} j_{1} (i_{-1}) & \circ \\ 0 & i_{1} (i_{-1}) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i_{1} & \circ \\ 0 & -(i_{1}(i_{-1})) \end{bmatrix} = \begin{bmatrix} i$$

Transformed into new basis, all operators are block-diagonal:

ŝt

ŝ

$$= C_{\{2\}}^{\dagger} \int_{0}^{+} C_{\{2\}} = \begin{pmatrix} \circ & f_{2} & f_{2} & \circ \\ i & \circ & \circ & \circ \\ 0 & f_{2} & -f_{2} & \circ \\ 0 & \circ & \circ & i \end{pmatrix} \begin{pmatrix} \circ & i & i & \circ \\ \circ & \circ & \circ & i \\ \circ & \circ & \circ & i \end{pmatrix} \begin{pmatrix} \circ & i & i & \circ \\ \circ & \circ & \circ & i \\ \circ & \circ & \circ & i \end{pmatrix} \begin{pmatrix} \circ & i & \circ & \circ \\ 0 & \circ & \circ & i \\ \circ & \circ & \circ & i \end{pmatrix} = \begin{pmatrix} \circ & i & \circ & \circ \\ 0 & \circ & \circ & i_{2} \\ \circ & \circ & \circ & i_{2} \\ \circ & \circ & \circ & i \end{pmatrix} (n)$$

These 4x4 matrices indeed satisfy $\left[\widetilde{S}^{*}, \widetilde{S}^{+}\right] = \pm \widetilde{S}^{*}, \left[\widetilde{S}^{+}, \widetilde{S}^{-}\right] = z \widetilde{S}^{*}$ (14) So, they form a representation of the SU(2) operator algebra on the <u>reducible</u> space $\bigvee^{\circ} \bigcup^{\circ} \bigvee^{\circ}$ Futhermore, we identify: on V° : $S^{+} = S^{-} = S^{+} = 0$

on
$$V': S^{\dagger} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \int \overline{Z} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} =$$

(15)

Now consider the coupling between sites 1 and 2, $\vec{S}_{l} \cdot \vec{S}_{z}$. How does it look in the new basis?

$$S_{1}^{2} \otimes S_{2}^{2} = \frac{1}{4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \implies S_{1}^{2} \otimes S_{2}^{2} = C_{12}^{4} (S_{1}^{2} \otimes S_{2}^{2}) C_{12} = \frac{1}{4} \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(13)

These matrices are not block-diagonal, since the operators represented by them break SU(2) symmetry. But their sum, yielding $\vec{S}_{\iota} \cdot \vec{S}_{z}$, is block-diagonal: $C_{[2]}^{\dagger}\left(\overline{S}, \otimes \overline{S}_{2}\right)C_{[2]} = C_{[2]}^{\dagger}\left(S_{1}^{2}\otimes S_{2}^{2} + \frac{1}{2}\left(S_{1}^{\dagger}\otimes \overline{S}_{2}^{2} + S_{1}^{\dagger}\otimes S_{2}^{\dagger}\right)C_{[2]} = \frac{1}{4}\begin{bmatrix} -\frac{3}{2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ (20)

The diagonal entries are consistent with the identity

$$\overline{S}_{1} \cdot \overline{S}_{2} = \frac{1}{2} \left[\left(\overline{S}_{1} + \overline{S}_{2} \right)^{2} - \overline{S}_{1}^{2} - \overline{S}_{2}^{2} \right) = \begin{cases} \frac{1}{2} \left(0 \cdot 1 - \frac{1}{2} \cdot \frac{3}{2} - \frac{5}{2} \cdot \frac{3}{2} \right) = -\frac{3}{4} & \text{for } S^{4} = 0 \\ \frac{1}{2} \left(1 \cdot 2 - \frac{1}{2} \cdot \frac{3}{2} - \frac{5}{2} \cdot \frac{3}{2} \right) = \frac{3}{4} & \text{for } S^{4} = 0 \end{cases}$$

$$(z_{1})$$

In section Sym-II.5 we will need $1 \cdot \vec{S}_2 \cdot \vec{S}_3$. In preparation for that, we here compute

$$\mathbf{1} \otimes \mathbf{S}_{\mathbf{z}}^{\mathbf{z}} = \frac{1}{2} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{pmatrix} \implies \mathbf{1} \otimes \mathbf{S}_{\mathbf{z}}^{\mathbf{z}} = \mathbf{C}_{[\mathbf{z}]}^{\mathbf{z}} (\mathbf{1} \otimes \mathbf{S}_{\mathbf{z}}^{\mathbf{z}}) \mathbf{C}_{[\mathbf{z}]} = \frac{1}{2} \begin{bmatrix} \mathbf{0} & \mathbf{0} & -\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ -\mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & -\mathbf{1} \end{bmatrix}$$
(22)

Sym-II.6

(6)

$$(V^{\circ} \oplus V^{\prime}) \oplus V^{\prime 2} = V^{\prime 2} \oplus U^{\prime 2} \oplus V^{\prime$$

Clebsch-Gordan coefficients:

(SS' \ ss'		14272)	(1/2,-1/2)	142,427	14, 42)	(3/2,3/2)	(¥1, 42)	(3/2,-42)	137,-3/2)	
((^[] _[3] ^[] _[) s"	<0,0; 42, 421 <0,0; 42,-421	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	0							
$=\langle S, S, S', S', S', S'', S'', S'', S'', $	<1,1, 42,421			0	Ø		D	0	0	
	<1,1; 1/2,-421			243	0	0	尔	٥	•	
	<1,0; 42,921			-1/53	0	0	<i>¥</i> 3 0	0	0	
	< 1,0; 42,-421			0	次3	0	0	3	٥	
	< 1,-1; 42, 1/21			0	-133	0	0	1	σ	
	د ر۱; 42,-421			0	0	D	0	•	1	
									(5)	I

Let us find $H_{12} + H_{23} \simeq \overline{S}_1 \cdot \overline{S}_2 \cdot \underline{1}_3 + \underline{1}_1 \cdot \overline{S}_2 \cdot \overline{S}_3$ in this basis.

Combining (Sym-II.5, (17-19) $\otimes 1_3$ with (Sym-II.5, (22-24)) $\hat{\varsigma}_3$, we readily obtain

S.	$\overline{\vec{S}_{2}} \cdot 1_{s} + \overline{1_{i} \cdot \vec{S}_{2} \cdot \vec{S}_{s}} = C_{(s)}^{\dagger}$	$\left(\vec{S}_{1}\cdot\vec{S}_{2}\cdot\right)$						(10)
			S	= 1/2		S =3/2		
	$\int -\frac{3}{4} 0 0 \frac{1}{2J_2} - \frac{1}{4} 0 0 0$		(-3/4 0	5/4 D	•	00	۱٥	
	0 - 3/4 0 0 9 4 - 252 0	<u>ي</u>	o -3/4	5/4 0 0 53/4	D	• •	0	
	0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	^ی	54 0	-14 0	•	0 0	o	
C_{rn}^{\dagger}	252 0 0 0 252 0 0 0	C	0 ³ /4	0 - 14	0	0 0	٥	(u)
-127	-1400252 4000	دري) = «	00	00	1/2	0		
	0 4 0 0 6 1/4 2/2 0	5	0 0	0 0	0	12 0	σ	
	0 -2/2 0 0 0 252 0 0	S	0 0	0 0	•	0 ⁴ 2	0	
	00000012	J	00	• • • • • •	6	0 0	"2	
			11. 6		•		۱	

Page 9

Beautifully blocked, and in agreement with Wigner-Eckardt theorem, cf. Sym-II.3 (5'):

$$|S'', i''; s''\rangle = (H_{[S]})^{i}_{i''} S^{S}_{S''} S^{s}_{S''}$$
 (13)

with reduced matrix elements

 $\langle S, i; s | \hat{H}$

$$H_{['/2]} = \begin{pmatrix} -3/4 & \sqrt{3}/4 \\ \sqrt{3}/4 & -\sqrt{4} \end{pmatrix}, \quad H_{[3/2]} = \frac{1}{2} \quad (14)$$

7. Bookkeeping for unit matrices

General notation: $|Q,q\rangle \equiv |S,s\rangle$ for virtual bonds, $|R,r\rangle \equiv |S,s\rangle$ for physical legs.

$$\begin{split} & \underbrace{\delta_{k+1} \underbrace{i_{k+1} j_{k+1}}_{i_k} \left[\left(\begin{array}{c} \Delta_{k} \cdot k_{k} \right) \right]_{k+1}}_{i_k} \left(\begin{array}{c} \Delta_{k} \cdot k_{k} \right) \left(\begin{array}{c} \lambda_{k} \cdot k_{k} \right) \right)_{k+1} \left(\begin{array}{c} \Delta_{k} \cdot k_{k} \right) \left(\begin{array}{c} \lambda_{k} \cdot k_{k} \right) \left(\begin{array}{c} \lambda_{k} \cdot k_{k} \cdot k_{k} \right) \left(\begin{array}{c} \lambda_{k} \cdot k_{k} \cdot k_{k} \cdot k_{k} \right) \left(\left(\begin{array}{c} \lambda_{k} \cdot k_{k} \cdot k_{k} \cdot k_{k} \right) \left(\left(\begin{array}{c} \lambda_{k} \cdot k_{k} \cdot k_{k} \cdot k_{k} \cdot k_{k} \right) \left(\left(\begin{array}{c} \lambda_{k} \cdot k_{k} \cdot k_{k} \cdot k_{k} \cdot k_{k} \right) \left(\left($$

for both first matrix and second block matrix, rows are labeled by $(\mathfrak{Q}_{\mathfrak{l}}, \mathfrak{K}_{\mathfrak{z}})$, columns by $(\mathfrak{Q}_{\mathfrak{z}}, \mathfrak{i}_{\mathfrak{z}})$.

Sym-II.7

(6)

for both first matrix and second block matrix, rows are labeled by $(\mathfrak{a}_{\iota}, \mathfrak{k}_{z})$, columns by $(\mathfrak{a}_{z}, \mathfrak{i}_{z})$.

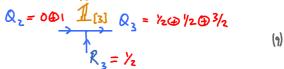
$$\widetilde{1}_{[z]}: \stackrel{:}{=} \begin{cases} \frac{\operatorname{record}}{\operatorname{index}} & \operatorname{bond} 1 & \operatorname{site} 2 & \operatorname{bond} 2 & \operatorname{dimensions} & \operatorname{data} & \operatorname{CGC} \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\$$

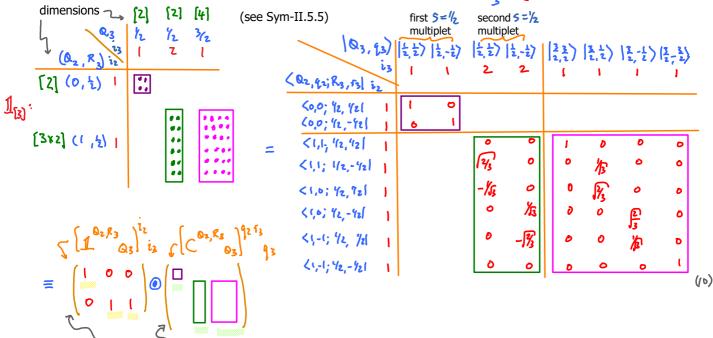
Hamiltonian for sites 1 to 2 [see Sym-II.5(20)]:

\sim	(-3/4	0	0	0
$\vec{s}_r \cdot \vec{s}_z$	=	0	6	7	4
		D 0		<u>4</u>	·II-3
		0			

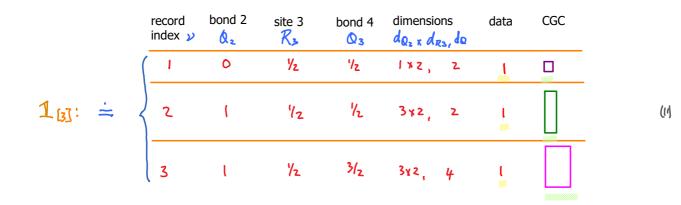
$$\begin{array}{c|cccccccc}
 & H_{[0_2]} & CGC & CGC-dim \\
 & & -\frac{3}{4} & 1_1 & 1 \\
 & & \frac{7}{4} & 1_3 & 3 \\
\end{array}$$

Sites 2 and 3





for both first matrix and second block matrix, rows are labeled by $(\mathfrak{Q}_{\mathfrak{z}}, \mathfrak{K}_{\mathfrak{z}})$, columns by $(\mathfrak{Q}_{\mathfrak{z}}, \mathfrak{k}_{\mathfrak{z}})$.



Hamiltonian for sites 1 to 3 [see Sym-II.5(12)]:

sparse way of storing
$$1^{0, 0, 3}$$

$$\widetilde{S_{1}} \cdot \widetilde{S_{2}} \cdot \mathbf{1}_{8} + \mathbf{1}_{1} \cdot \widetilde{S_{2}} \cdot \widetilde{S_{3}} = \begin{pmatrix} -3/4 & 53/4 \\ S/4 & -9/4 \end{pmatrix} \otimes \mathbf{1}_{2} \\ \vdots & \vdots & \vdots \\ 1_{4} \end{pmatrix}$$
(12)

Diagonalize H:

eigenenergies do not depend on
degenerate multiplets!

$$H_{\{Q_{3}\}} | Q_{5}, \overline{\iota_{3}}; q_{3} \rangle = E_{\{Q_{3}\}} \overline{\iota_{3}} | Q_{2}, \overline{\iota_{3}}; q_{3} \rangle$$

$$|R_{3}, \overline{\iota}_{3}; q_{3}\rangle = |Q_{3}, \overline{\iota}_{3}; q_{3}\rangle \underbrace{\mathcal{U}_{103}}_{i_{3}} \overline{\iota}_{3}$$
 (15)

$$\left(\begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right)^{i_{2}} \left(\begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right)^{i_{2}} \left(\begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right)^{i_{2}} \left(\begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right)^{i_{3}} = \left[\begin{array}{c} 0 \\ 0 \\ 2 \\ 2 \end{array} \right]^{i_{2}} \left(\begin{array}{c} 0 \\ 2 \\ 2 \end{array} \right)^{i_{2}} \left(\begin{array}{c} 0 \\ 1 \\ 2 \end{array} \right)^{i_{2}} \left(\begin{array}[0 \\ 1 \\ 2 \end{array} \right)^{i_{2}} \left(\begin{array}[0 \\ 1 \\ 2 \end{array} \right)^{i_{2}} \left(\begin{array}[0 \\ 1 \\ 2 \end{array} \right)^{i_{2}} \left(\begin{array}[0 \\ 1 \\ 2 \end{array} \right)^{i_{2}} \left(\begin{array}[0 \\ 1 \\ 2 \end{array} \right)^{i_{2}} \left(\begin{array}[0 \\ 1 \\ 2 \end{array} \right)^{i_{2}} \left(\begin{array}[0 \\ 1 \\ 2 \end{array} \right)^{i_{2}} \left(\begin{array}[$$

This illustrates the general statement: in the presence of symmetries, A-tensors factorize:

$$F_{i}^{(0,i;q),(R,j;r)}(S,k;s) = (A^{\alpha R}_{S})^{ij}_{k} (C^{\alpha R}_{S})^{qr}_{s} \qquad (17)$$

$$\frac{Q_{i}i;q}{Q_{i}i;q} \xrightarrow{S,j;s} = \frac{Q_{i}i}{Q_{i}q} \xrightarrow{S,j}_{s} \qquad (18)$$

