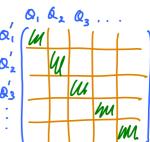
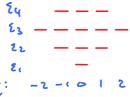
Symmetries I: Abelian


NRG: [Wilson1975], [Toth2008], [Weichselbaum2012b] DMRG: [McCulloch2001], [McCulloch2002] General tensor network: Singh, Pfeiffer, Vidal [Singh2010] Goal: exploit symmetries of Hamiltonian! generator of symmetry group $\left[\hat{H}, \hat{Q}, \right] = 0$, then: (1) If Hamiltonian has symmetries, • $\hat{\mathbf{Q}}$ and $\hat{\mathbf{H}}$ can be diagonalized simultaneously: $\hat{Q} | \hat{a}, \hat{i} \rangle = \hat{Q} | \hat{Q}, \hat{i} \rangle$, $\hat{H} | \hat{Q}, \hat{i} \rangle = \hat{E}_{\hat{Q}, \hat{i}} | \hat{Q}, \hat{i} \rangle$ (z) • H connects only states with same \Diamond \rightarrow blockdiagonal · for non-Abelian symmetries, eigenstates from degenerate multiplets, where $\frac{9}{2}$ distinguishes states within multiplet, and $\overline{2}$ enumerates distinct multiplets. 24 129,27, Exploiting these structures reduces numerical costs! 1. Example, Abelian symmetry: XXZ-chain (spin 1/2) symmetry group: U(1) $\hat{\mu} = \sum_{p} \sum_{j} \left(\hat{s}_{k}^{\dagger} \hat{s}_{l+1}^{-} + \hat{s}_{l}^{-} \hat{s}_{l+1}^{\dagger} \right) + \sum_{p} \overline{s}_{l} \hat{s}_{l+1}^{2} \hat{s}_{l+1}^{2}$ $\hat{S}_{\downarrow\downarrow}^{\ddagger} = \sum_{n} \hat{S}_{n}^{\ddagger}$, is conserved: $\begin{bmatrix} \hat{H} & \hat{S}_{\uparrow s \uparrow}^{\ddagger} \end{bmatrix} = \mathbf{o}$ 'Abelian U(1) symmetry' (4) Total spin,


 $\hat{Q} \equiv 2 \hat{S}_{\text{fol}}^{2}$ For Abelian symmetry, conserved quantum number is often called 'charge': to avoid proliferation of $\frac{1}{2}$ factors

Conservation of $S_{\mu\nu}^{3}$ is obvious by inspection. But let us check explicitly: $\hat{S}_{\ell}^{t} = \begin{pmatrix} 1 & \iota \\ \circ & \iota \\ & & \cdot \end{pmatrix} \quad \hat{S}_{\ell}^{-} = \begin{pmatrix} 1 & \iota \\ \circ & \circ \\ \iota & & \cdot \end{pmatrix} \quad \hat{S}_{\ell}^{-} = \begin{pmatrix} \chi_{\ell} & \circ \\ \circ & -\chi_{2} \end{pmatrix}$ One site: (5)

Consider direct-product space of sites 1 and 2, and its Hamiltonian H_{12} :

$$\hat{S}_{1}^{\dagger} + \hat{S}_{2}^{\dagger} = \hat{S}_{1}^{\dagger} \otimes \hat{\mathbf{1}}_{2} + \hat{\mathbf{1}}_{1} \otimes \hat{S}_{2}^{\dagger} \qquad (b) \qquad \hat{\mathbf{2}}_{2} \otimes \mathbf{2}_{-2} \\
= \begin{pmatrix} \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} 1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix} \\
= \begin{pmatrix} \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} 1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix} \\
= \begin{pmatrix} 1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix} \\
= \begin{pmatrix} 1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix} \\
= \begin{pmatrix} 1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix} \\
= \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix} \\
= \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix} \\
= \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\
= \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix} \\
= \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\
= \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix} \\
= \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\
= \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix} \\
= \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\
= \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix} \\
= \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\
= \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix}$$

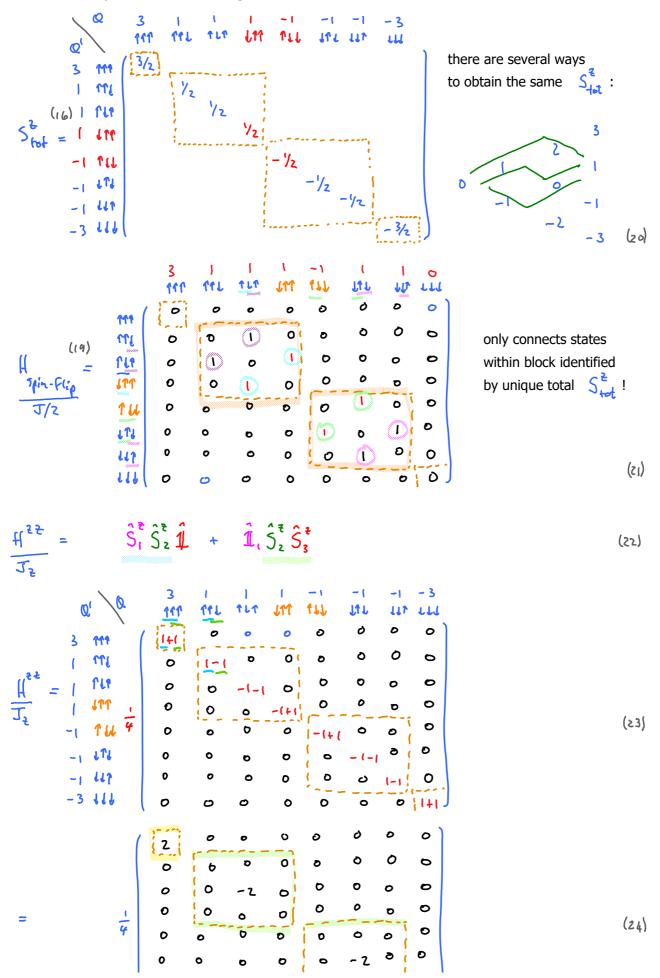
(3)

SYM-I.1

$$\hat{S}_{1}^{2} \hat{S}_{2}^{2} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \end{pmatrix}$$

(10)

Programming challenge: exploit this 'sparse' structure to save memory and computation time! We don't want to store large matrices with many zeros! Instead, store only relevant information!


Bookkeeping	Use	<mark>Q</mark> =	<mark>Z</mark> (Eig	genvalue of $\hat{S}_{\text{lef}}^{\ell}$) as label:	(11))
Label states as	$ \alpha,i\rangle$, where	i	enumerate states with same	Q .	

Record of states needed	record	charge 🗸		enumerates states with same charge		
	index 🎾	Q	ż	explicit representation	state	
to describe 2 sites:	1	2	1	ſ	(11)	
		D	1	(1,0) ^T	11,1>	
	2		Ζ	(o, 1) ⁷	16,7)	
-1 < -2	3	- 2	1	1	(11) (12)	
Record of sectors ('blocks') of	record index	, Q'	Q.	a (a'IHIQ> ~ Saa		
Hamiltonian for 2 sites:	t	٢	Z	ት ፓ _ድ		
The task of diagonalizing Hamiltonian can be split into three separate tasks	2	0	0	$\frac{1}{2} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} - $	F_{ϵ}	
(two of which are trivial).	3	- 2	- 2	4 52	(13)	

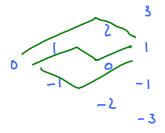
Consider direct-product space of sites 1 and 2 and 3:

$$\begin{aligned} \hat{\mathbf{S}}_{st}^{*} &= \hat{\mathbf{S}}_{1}^{*} + \hat{\mathbf{S}}_{2}^{*} + \hat{\mathbf{S}}_{3}^{*} &= \hat{\mathbf{S}}_{1}^{*} \otimes \hat{\mathbf{I}}_{st} \otimes \hat{\mathbf{I}}_{s}^{*} + \hat{\mathbf{I}}_{1,0} \otimes \hat{\mathbf{S}}_{s}^{*} \otimes \hat{\mathbf{I}}_{s}^{*} + \hat{\mathbf{I}}_{1,0} \otimes \hat{\mathbf{I}}_{s}^{*} \otimes \hat{\mathbf{I}}_{s}^{*} + \hat{\mathbf{I}}_{1,0} \otimes \hat{\mathbf{I}}_{s}^{*} \otimes \hat{\mathbf{I}}_{s}^{*} &= \hat{\mathbf{I}}_{1,0}^{*} \otimes \hat{\mathbf{I}}_{s}^{*} + \hat{\mathbf{I}}_{1,0} \otimes \hat{\mathbf{I}}_{s}^{*} \otimes \hat{\mathbf{I}}_{s}^{*} + \hat{\mathbf{I}}_{1,0} \otimes \hat{\mathbf{I}}_{s}^{*} \otimes \hat{\mathbf{I}}_{s}^{*} + \hat{\mathbf{I}}_{1,0} \otimes \hat{\mathbf{I}}_{s}^{*} \otimes \hat{\mathbf{I}}_{s}^{*} &= \hat{\mathbf{I}}_{1,0}^{*} &= \hat{\mathbf{I}}_{1,0}^{*} \otimes \hat{\mathbf{I}}_{s}^{*} &= \hat{\mathbf{I}}_{1,0}^{*} &= \hat{\mathbf{I}}_{1$$

After switch, operators are block-diagonal:

0	0 0	0 0 0	0	0	0 - 2	0 0	0
0	o	0	ο	D	ى	0	0
0	σ	0	0	D	0	0	2

Q =


3

Use

 \mathbf{z} (Eigenvalue of $\mathbf{S}_{\mathbf{k}}^{\mathbf{z}}$) as label:

Record of states needed to describe 3 sites:

Bookkeeping

Record of sectors ('blocks') of Hamiltonian for 3 sites:

The task of diagonalizing Hamiltonian can be split into four separate tasks (two of which are trivial).

	record	ch	arge	~ enumerates states with same charge					
index y		C	2	2	explicit representation	state			
	E.	3	3		t	(111)			
				ι	(1,0,0) ^T	1993			
	2	1		ζ	$(v, 1, s)^T$ $(v, o, 1)^T$	(TLT)			
				3		1141>			
		- (- 3		τ	$(1,0,0)^{T}$	hun			
	3			z	(0,1,0) ^T	ani			
				3	(0,0,1)T	(ILIT)			
	4			t	L	(111)	(Z6)		
	record index y Q' Q (A H Q') ~ SQQ'								
	T.	3	3		2· 4 J2				
	۲	J	ſ		$\frac{J}{2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \frac{L}{4}$	$+\frac{1}{4} T_{\epsilon} \begin{pmatrix} \circ \\ -2 \end{pmatrix}$			

 $-(-1) \frac{J}{2} \begin{pmatrix} \circ & \circ & \circ \\ 1 & \circ & 1 \\ \circ & \circ & \circ \end{pmatrix} + \frac{1}{4} J_2 \begin{pmatrix} \circ & -2 \\ -2 \\ \circ \end{pmatrix}$

(24)

(25)

(27)

Labelling scheme for Abelian symmetry

Suppose $\left[(\hat{A}, \hat{a}) = b \right]$, and \hat{a} -eigenstates are uniquely labeled by a single quantum number: $\hat{\mathbf{O}} \mid \hat{\mathbf{O}} \rangle = \mathbf{O} \mid \hat{\mathbf{O}} \rangle$ (e.g. eigenstates of $\int_{\text{fact}}^{\hat{\mathbf{c}}} \hat{\mathbf{O}} \rangle$ (28)

Then all states in Hilbert space can be labeled by following scheme: lQ i> , eigenvalues of 🧔 • 'Q-label' or 'symmetry label': Q (29)• 'i-label' or 'multiplet label': $\frac{1}{2}$, enumerates <u>different</u> irreducible multiplets having the same Q(30)For an abelian symmetry each 'multiplet' contains just a single state, hence & suffices for labeling states. (For nonabelian symmetry, it could contain several states, hence another internal label is needed: logq, i)

In group theory language: $|0,i\rangle$ is a 'reducible multiplet' of $\hat{0}$, the index i serves to 'reduce' it. We need systematic, automatable way of generating all states $|0,i\rangle$ and computing matrix elements

$$|f_{[0]}^{i'}_{i} = \langle Q, i'|\hat{H}|Q, i\rangle \qquad (31)$$

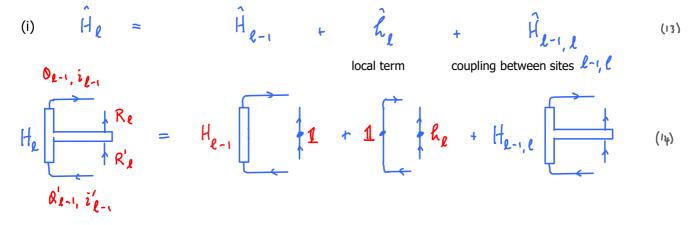
$$|H_{[0]}^{i'} = \langle 0, i'| \hat{H} | 0, i \rangle$$
⁽³¹⁾

Diagonalizing $[+]_{[Q]}$ yields symmetry- and energy eigenstates, $[Q, \overline{\iota}] = [Q, \iota] \mathcal{U}_{[Q]}$ (32) with eigenenergies $E_{[Q]} \overline{\iota}$ overbar will indicate energy eigenbasis

2. Iterative diagonalization with Abelian symmetry

Build chain iteratively, in
$$[\mathfrak{q}_{,i}]$$
 basis:
Local basis for each site: $[\mathfrak{r} > \equiv \{R\} \in \{[1]\}, [-1]\}$ for spin-1/2 chain
Ket: $\mathfrak{q}_{0}, \mathfrak{i}_{0} = \mathfrak{1}, \mathfrak{q}_{1}, \mathfrak{i}_{1} = \mathfrak{q}_{2}, \mathfrak{i}_{2} = \mathfrak{q}_{3}, \mathfrak{i}_{3}$ 'sum rule' at each vertex:
Ket: $\mathfrak{q}_{0}, \mathfrak{i}_{0} = \mathfrak{1}, \mathfrak{q}_{1}, \mathfrak{i}_{1} = \mathfrak{q}_{2}, \mathfrak{i}_{2} = \mathfrak{q}_{3}, \mathfrak{i}_{3}$ 'sum rule' at each vertex:
Ket: $\mathfrak{q}_{0}, \mathfrak{i}_{0} = \mathfrak{1}, \mathfrak{q}_{1}, \mathfrak{i}_{1} = \mathfrak{q}_{2}, \mathfrak{i}_{2} = \mathfrak{q}_{2}, \mathfrak{i}_{2}$ (i)
Unit matrix transforms to 'symmetry eigenbasis': $\mathfrak{q}_{\ell + i}, \mathfrak{i}_{\ell + i} \neq \mathfrak{q}_{3}, \mathfrak{i}_{\ell}$ $\mathfrak{q}_{\ell + i}, \mathfrak{i}_{\ell + i} = \mathfrak{q}_{\ell}, \mathfrak{i}_{\ell}$ (i)
The i-index is usually not displayed in diagrams, and we will omit it henceforth.
Bra: $\mathfrak{q}_{0}, \mathfrak{l}_{1}, \mathfrak{q}_{1}, \mathfrak{q}_{1}, \mathfrak{q}_{2}, \mathfrak{q}_{1}, \mathfrak{q}_{3}, \mathfrak{q}_{4}, \mathfrak{q}_{5}, \mathfrak{q}_{4}, \mathfrak{q}_{5}, \mathfrak{q}_{4}, \mathfrak{q}_{4}$

Sym-I.2

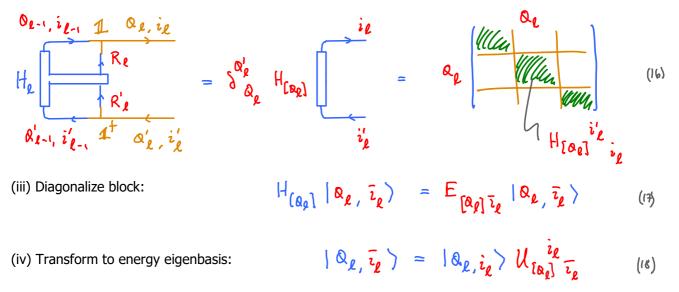

 $\mathcal{L}_{\mathcal{L}} = \mathcal{L}_{\mathcal{L}} + \mathcal{L}_{\mathcal{L}} +$

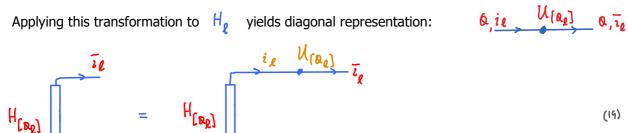
These relations imply: $Q'_{\ell} \stackrel{(ij)}{=} Q'_{\ell-1} + R'_{\ell} \stackrel{(\forall)}{=} (Q_{\ell-1} + i) + (R_{\ell} - i) \stackrel{(s)}{=} Q_{\ell} \implies \text{block-diagonal} (iz)$

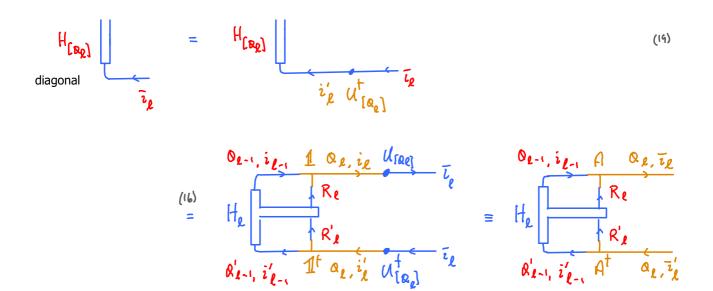
This is no surprise: if every vertex satisfies charge conservation, so does entire diagram!

Strategy for iterative diagonalization

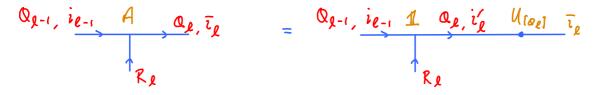
- (i) Add new site, (ii) transform to symmetry eigenbasis to make Hamiltonian block-diagonal.
- (iii) Diagonalize each block, (iv) transform to energy eigenbasis.




(ii) Symmetry eigenbasis:


$$|Q_{\ell}, i_{\ell}\rangle = |R_{\ell}\rangle |Q_{\ell-1}, i_{\ell-1}\rangle \underline{1}^{Q_{\ell-1}, i_{\ell-1};R_{\ell}} Q_{\ell,i_{\ell}} |Q_{\ell,i_{\ell}}| |Q_{\ell-1}, i_{\ell-1}\rangle \underline{1}^{Q_{\ell-1}, i_{\ell-1};R_{\ell}} Q_{\ell,i_{\ell}} |Q_{\ell,i_{\ell}}| |Q_{\ell-1}, i_{\ell-1}\rangle |Q_{\ell-1}\rangle |$$

10 .


To transform to this basis, attach unit matrices to legs of H_{ℓ} :

So, desired transformation from old to new eigenbasis is:

(Only A-matrices need to be saved to disk.)

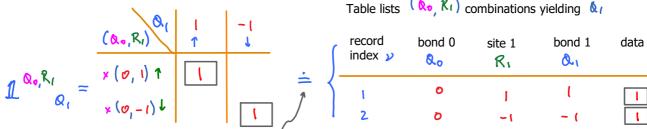
3. Bookkeeping for unit matrices

Sites 0 and 1

Sites

Sites

$$\begin{aligned}
 I = \begin{pmatrix} R_{1} \\ R_{2} \\ R_{1} \\ R_{1} \\ R_{2} \\ R_{1} \\ R_{2} \\ R_{1} \\ R_{2} \\ R_{1} \\ R_{2} \\ R_{2} \\ R_{2} \\ R_{2} \\ R_{2} \\ R_{1} \\ R_{2} \\ R_{2} \\ R_{2} \\ R_{2} \\ R_{2} \\ R_{1} \\ R_{2} \\ R_{1} \\ R_{2} \\ R_{1} \\ R_{2} \\ R_{2} \\ R_{1} \\ R_{2} \\ R_{2} \\ R_{2} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{3} \\ R_{2} \\ R_{3} \\ R_{3} \\ R_{2} \\ R_{3} \\ R_{3} \\ R_{2} \\ R_{2} \\ R_{3} \\ R_{3} \\ R_{$$


1^{Q2, R3} Q3 3 -3 **Q**3 211 the th 111 111 **ru** 111 117 ٢z 1 ٢ (Q_2, R_3) 1 3 ι ء 1 pp (2,1) L ſ 11 (2,-1) 1 1 0 0 ſιζ 0 1 0 (0,1) 1 0 0 ١ ÷ O 6 1 **L1** 0-1)1 0 u (-2,1) t 1 0 0 ١ W (-2,-1) J 1

magenta arrows indicate Q_{1} , green, arrows R_{3} , blue arrows Q_{3}

The scheme for producing such tables can be automated!

Page 10

Table lists (\aleph_{l}, \aleph_{3}) combinations yielding \aleph_{3} record bond 2 site 3 bond 3 data index ン 02 Rz Q3 I. 3 1 Ζ 1 -1 2 \$ Ζ 0 0 I. 3 0 ١ 0 0 ~1 4 -1 0 5 - 2 1 ~ 1 0 6 - 2 - 3 ١

greer ling with sparse matrices) grey

0. <u>1</u> Q,

Sym-I.3

 (k_z) combinations yielding (k_z)

1

٥ ١

site 2 bond 2 data

Qz

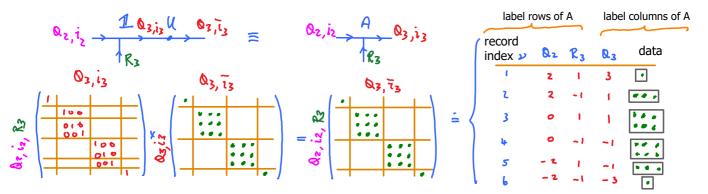
2

0

0

- 2

Rz


ī

-1

\$

- (

Full A-matrix obtained by diagonalizing H has similar structure:

grey box contains data for how to combine $Q_1 R_3$ states to obtain R_3 energy eigenstate