MPS-1V: Matrix product operators [Schollw6ck2011, Sec. 5] MPS-1V.1
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In practice, application of MPO is usually followed by SVD+truncation, to 'bring bond dimension back down':
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Multiplication of MPOs Ww = w ()
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In practice, such a multiplication is typically followed by SVD+truncation.
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Addition of MPOs O+ o0
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Sum of single-site operators

R . . (MPS-1.1.22)
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Let O % (7’[” with single-site operators O Tel A (s
MPO representation:
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2. MPO representation of Heisenberg Hamiltonian

n M-t A9 A C A, oA . A A N 1
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is shorthand for = T g,*@%f@ .'fL&) L-®1

+ 31 Sfesie...ol e

Contains sum of one- and two-site operators. How can we bring this into the form of an MPO?

Solution: introduced operator-valued matrices, whose product reproduces the above form!

n _ _ J( .
H = (& —g- \/J[(,] lgz <7
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A
= \A)[\] \A)[L\ ®... ® W[u] = product of one-site operators.

A
Each W [el acts only on site f ; their tensor product gives the full MPO.

MPS-1V.2

(10 WNIPLY Jols; > Wie1s <o,! Yoo (1o W[m636”<¢”l>

4
Viewed from any given bond, the string of operators in each term of [{ can be in one of 5 'states'
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Ltelet o -4st ® Lo 1 state 1: only 1 to the right
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GL® T5"®@ S @® it ® 1 state 4: one S just to the right

state 5: one - {\S ¢ or completed interaction

somewhere to the right

Build matrix whose element ¢ J implements 'transition' from 'state’ J to ¢ on its left:
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~
Check: multiplying out a product of such W 's yields desired result:
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= full Hamiltonian for 4 sites!
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Longer-ranged interactions

state 1: only 7 to the right
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3. Applying MPO to mixed-canonical state [Schollwbck2011, Sec. 6.2] MPS-IV.3

How does an MPO act on an MPS in mixed-canonical representation w.r.t. site { ? Consider
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Here % l a> } form a basis for the mixed-canonical representation. Express operator in this basis:
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For efficient computation, perform sums in this order: 251 X m’
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The application of MPO to MPS is then represented as: Y-]’ s
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w
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4. MPS representation of Fermi sea key idea: [Silvi2013] MPS-1V.3
we follow compact discussion of [Wu2020]
further applications: [Jin2020,Jin2020a]

Consider a system of non-interacting fermions defined on sites £ = L... N
’ /
4 o
with local basis \@7 ¢ { 19,2, "03 and |\!) = CQ\OD t
empty, filled (’&
1

described by a quadratic Hamiltonian, diagonal

A - "f £ foa n + + ] ‘oA %

T “t ot
with eigenenergies %,  and eigenmodes d g = C P U x ,
= T 4 1oy |
Filled Fermi sea of M particles: = v} vacuumstate | o 9 o) (s ... @10
L=t ” /L/(all sites empty) T N>

|

bond dim. =1 . l( 1 t
/] o 2 o

Goal: express this state as an MPS!

~
Strategy: express each d » asan MPO, sequentially apply these to vacuum state.
N
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MPO representation of o\tl : (similar to MPS-1V.1.19)

at + 0 | (MPS-1.1.22) }
o{d = % CIM N with single-site operators Cﬁ = Ce 24 72

{

¢
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vt
When computing ‘AM .o 0(1 O{I |°7 a truncation is needed after each application of an MPO to an MPS.
If the A"y coefficients have similar magnitudes throughout the chain (i.e. when varying Ifor fixed « ),

then application of dt. substantially modifies the matrices of the MPS on all lattice sites, hence subsequent
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truncation is likely to introduce considerable errors.

{.
To avoid this, it is advisable to express the d« through 'Wannier orbitals' that are more localized in space, in that
~ A

they diagonalize the projection, X , of the position operator X into the space of occupied orbitals [Kivelson1982] :

N N .{, N" 1. a
position operator: X = Z J 4 J c J its projection: X K = <°‘ da(' X 0{,( |07
£=
«
~ +~ s = Jot B ¥
Diagonalize: D=8XDB , define Wannier orbitals R — —_—
. + A of 1 L o
diagonal . ; L S e B, = co U « o) .
with B = R unitary "‘EF 0

L}

+l “: - tet y * 1r Tx A T o
(then (oH} X+, o) =8 ! (olda(a,r)( 0‘,('075 fS B KB =D, is diagonal )

1 t fr
Now, express the Fermi sea through Wannier orbitals, using d L = ¥ ¢ B«

tot bt + 1.
IFY = d)fM‘,. 0’1 O(I]O7 = (—Y»Mg “M> (git%fr,;)(’?m BT“)$D>

¥ + + s due to Pauli principle, only those terms
=R G Bf"z, g™ 5 § 4 [ 0> survive for which all r-indices are different.
o M- 22 Cpy O Ty Ty In each surviving term, rearrange all {7

R

T into canonical N,...,2,1 order, keeping track
def 6" = | (since B s unitary) of minus signs using a fully antisymmetric
Levi-Civita symbol, ¢ . . = _¢ - ;
M + M ...‘...J... J
= Mooy = T c,us)eloy
T=t ¥z

Truncation errors are much reduced when using an MPO representation for the f operators:

M
LS PASL
{=

. . 2 o
Wm (' ) W - fel ,
) f R W Py 4
0 0 (flue) e i,

In practice, truncation errors have been found to be smallest [Wu2020] if the parton operators are applied
in an 'left-meets-right' order (first apply left-most , then right-most, then proceed inwards):

+ LA
e.g. for even N: lF5 = ¥m,_£:/,,-( fu_‘1(1§”§| 107
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5. Application to spin models [Wu2020] MPS-IV.5

Parton representation of spin models

Models involving spin-1/2 degrees of freedom can be expressed through fermions (sometimes called

'pseudofermions' or 'partons' in this context), using the 'Abrikosov representation':

a
5:;] = Cyq ji(-CQ)ssces .. ei"'j.*g with constraint

Pauli matrices

with {CQ; Cgsi Sll'SSs icf‘/s', Cesi =0, iCQé'/ Cesi s 0.

A(s’ |

sZ=,14, dls

i 1

The constraint forbids unphysical states: ‘ﬂf)w‘;>é§h,0>, 10,12, g 7, ), }

e—

. physical unphysical
a a Q G‘OL <
Exercise: verify that i S , S 5 holds, by using the fermionic anti-commutators
Spin-spin interaction: ﬁ_zg’s’ =S ! )(‘{' =3t )
pin-spin interaction: = L S : C(QU' s Cos J(Cogy 3 o> s Cons
£

The quartic interaction is often treated in mean-field approximation. The resulting quadratic model is
diagonalized, then a half-filled Fermi sea of eigenmodes is constructed, and in the end, a single-occupancy
projector is applied to enforce the constraint.

The MPO approach allows us to do this explicitly using tensor network methodology [Wu2020].

Use a chain of 2N fermionic sites, labeled by composite index k = (¢, s\ (=<t kl/ s= 11

Build Ferm| sea of Wannier orbltals built from mean-field parton elgenstates then apply single-occupancy projector:

¢ S

S PADRERT SN du = ¢y uky e

k=1 2+ 3 N A L

NI U ool P = P; P(t] , yields 0 when acting on \\'\7& or\o‘o)l
. ne W
A - " 1 a A A A
£ Fm = (‘ f\“ “l&) V\"V\u
e it it
i » AN A A A A
Q| 1 ] [ | ] = { , | 'single-occupancy
}a', *O'z ) }0-“ 11 %84\'0\ * ”’7"0 { projector'

.f
In practice, doubly-occupied sites can be removed after each application of )C + o because they

don't survive the final projection anyway. Advantage: local state space dimension is reduced from 4 to 3:
{ " half-filled Fermi sea

A N -‘» A N ” *

PIEY= P 1T £ 10) = Pﬁ(%{f)lo‘)/

Y] a " .

= -”;_'3\“ p 8“] = (I =Ny, ﬁu) yields 0 when acting on | \1\7‘

>

ne

SO
*o

'Gutzwiller projector’,
eliminates double occupancies

i

\125(.0\ v 1Son 1 L0300l I__L*:i 1l o}
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Haldane-Shastry model [Haldane1988], [Shastry1988]

Haldane and Shastry (HS) independently studied a spin-1/2 chain with periodic boundary conditions,
for a Hamiltonian fine-tuned such that the parton construction yields the exact ground state:

R”l
- " © = (¢-¢)
Hamittonian: | = > St'5¢' £4'=).. N =even M
"S 2 4 1°7

L Ry Ra =
R”: = %{, din [:Tl; ((-1')1 = cord length for circle of diameter N/

It can be shown analytically that ground state has following form: N .
position parton' creator ?

a + t ( N _ l.‘“ 272'{/ t
- ; - N
Kj) =? 1 o(a(s [0y with p{“ z N"LZ 12 Cls ,
o $=t f\ L=
g creates a parton with 'momentum' 2n &
N
o'i\'~.. t(’z‘/—l)' —L-, if NW\!)&U = o
where the occupied states are labeled & = “
o,4(, ..., t N-2 if Nwmody = 2
Y
¢ 5
Exact ground state energy: Ej =~ (N+%)
2¢
N/2 L
= = 3(-1 T
Exact spin-spin correlator: < , - S, > = 2. all Sin [",\7 (zn—1) ”
4 (XY ns1 én-t
ZN $/m -z)f—ej
Numerical benchmark test of the MPS 12 Jq a4
representation of parton ground state: the L8 D=1000 . /—'—_\—_-“'-L
difference between its results for the spin- e | | 28 P
spin correlator and the exact analytical 12 s K BB 3 ’,.»""
expression is very small. % i o D=5000 (@) = 1 P (b)
K . > ~l
O " ™ iy, oL 0.2
10 30 50 70 90 10 30 50 70 90
distance step

FIG. 2. (a) The absolute difference F between the numerical
and exact values of the spin-spin correlation function in the N =
100 system. (b) The evolution of the von Neumann entanglement
entropy S, at the center of the N = 100 system during the
calculation. Three methods are compared: (1) the original modes
in |Wys) (red dots), (2) the Wannier transformed modes from left
to right (blue squares), and (3) the Wannier transformed modes
and the left-meet-right strategy (magenta hexagons).

From [Wu2020].
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