MPS I: Basic properties of matrix product states

1. Overlaps, matrix elements < {l; | 1{/)

We first consider general quantum states, then matrix product states (MPSs):

) .. l6ple)) CO el o= 1) €7 TR0

n

General ket:  |¥)

N ¢ 6, 6, (Y]
€ 9
( b4 ) summation over repeated indices implied
+ 6 b (2 G”
‘| - . -~ (]
General bra: (¥| = C®~%  (6]{s,|-~ {8yl = C;f‘ﬂ @ ®
1= Cj% \’V\;’_ Z-?F
- X6 ... /
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= Co-:K C v
Recipe for overlaps: contract all physical legs of bra and ket.
General operator: O = 6) O =(s 0}
) 4 Y1 u
61
Matrix - a e g B
elements: <1f lo }"f> = C§,<5"| ) O°z (3 \0' )¢ e
Z o — 12
S & 87 3 s
b ; O | |
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= (40 C ?\e: © %4£g‘ n (sb
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Recipe for matrix elements: contract all physical legs of bra and ket with operator.

Now consider matrix product states:

Ket: dummy index
\(/ dummy site dummy site />
-y e, “, A An Aw A
1y= 18 Al Wi
1’( Q) “ﬂ [zl f’ A[Bl X ﬂ[,.,] t W m_f“ (C)
dummy u?dex e, oo 63 6
A"
Recipe for ket formula: as chain grows, attach new matrices AG on the right «""ﬂ
(in same order as vertices in diagram), resulting in a matrix product of A € matrices . U

index-reading order

c
Square brackets indicate that each site has a different A matrix. We will often omit them and

o6,
use the shorthand, A “%F = Q[g]&ﬁ since the £ on % uniquely identifies the site.
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Add dummy sites at left and right, so that first and last A's have two virtual indices, just like other A's .

index-reading order

Bra:
S €
xe‘ M‘; ®e . fﬁ /\r&
<1fl = Am“ Af Fﬂcs ¢ Q | <§l A 2 l 6o L—%;— (#a)
6 6. S
th 4% )
A[ ) G,J/M [3] 63|g ﬂ[z] G,_okn[,]g:( L < 3:- E *-"——1- i—é—t—e (Fh)
—_— B ﬂ ) ﬂ[ﬂ ‘)[3] ﬂ}ul
We expressed all matrices via their Hermitian conjugates by transposing indices and inverting arrows.
To recover a matrix product structure, we ordered the Hermitian conjugate matrices to appear in the
opposite order as the vertices in the diagram.
Recipe for bra formula: as chain grows, attach new matrices A son the left,
(in opposite order as vertices in diagram), resulting in a matrix product of A , matrices.
At Aw Ay Ao
X x > —5>—p—X
; COYRS 1A .
Overlap < L?' 4’ ) { _E) G\ 6 L‘-’ ‘ 6 Recu?e. c.jon.tracf all
" ) § «! A [ 3 l: 4. J} M ) physical indices! (86
,\,* m‘\. At ~4
A oty Rii
~ ¢ ,...-‘- f |
- { J 't (6 R Gy M6y
f\[u]sN nee . A (ele 0 L6 f'm « A f ”m I (%)
— L L J 1

Recipe: contract all physical indices with each other, and all virtual indices of neighboring tensors.

Matrix elements: . %ﬂmo‘ A t ﬁ % ﬂw]
(SL) 5 1 5 Ee
<F101g¢y = | ¥ ’
,y_i: J\ ?,4‘ f"’\,l JT‘_L P A M Jk::;l(
qtt A Ara
~‘[’l “"i'/sl aa 't ‘:'6,'...6:, otGL /“ 6y
n[ﬂ]‘ uer q(zlsz',d gtlls\"o 6 6,...6, ﬂm w Al /! At (19)
L I ——— ‘ l—-(-;—-l—-"""'l‘ \

Exercise: derive this result algebraically from (7a), (8a)!

If we would perform the matrix multiplication first, for fixed T , and then sum over T '
we would get o(" terms, each of which is a product of 2/ matrices. Exponentially costly! @
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But calculation becomes tractable if we rearrange summations:

z .
" ()
_J
{
‘ = Cfoh
At "'-}F' Fx! 6, a6 M6y
6.~/“‘ Lo A Gzol( H G'I ' Fl[('s 0( fz} (5 ves A[l)] ] Uz)
- CE(‘[«
= b
= C[z] 3
[V 3
\
= Cflﬂ(
Diagrammatic depiction: 'closing zipper' from left to right.
« B « B B
I e B e 001 ST T
C[o]{w';‘ }Gz'\fs*( \6y = C[l]{_ +5z '\53* F = C[z]{i“‘s* My = C[n] .
< 4| > X < 3 X = ¥X
a B A6 # 03y
The set of two-leg tensors C[z] can be computed iteratively:
[ 1
Initialization: Cfol{: = /E Cfol , = { (19
X
(identity)
)
- alds - A
Iteration step: C - 6 LI 4\ 1%
sum over @y {[]E ) (2-1 - 7 C[[] A : C[Z ']'L 7\
yields C ¢y A 1 A Us)
Final answer: ~ J
Cely > = Cg [
Cost estimate (if all A's are Dy D):
One iteration: DA-D s :Dz dD 3 )
fixed sum fl)l(ed sum 7'
fe o A (F v
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——— = -

fixed sum fixed sum ’ = = t__ 1! »
e 0 AT N

Total cost: A~ D 7’,(. K 7))

Remark: a similar iteration scheme can be used to 'close zipper from right to left':

\ \ \ «
. . erd . = . (19
i p_} T = 6,"44 fo-¢ I?Dm N :}Diﬂ '
L

g

N .
(4 4

6.4

ya — Vi
<

Y eQ \V

A Y

<

( ‘ 1 {53
Initialization: ‘ 3 D[ N41) = ‘} y It(sa::qt(i)c\)/zr?fp: j D[R] = _fﬁj D[E’rll
{ {

{
(identity) yields Dte} 1

(29

Normalization ~— {-| ) = ? Use above scheme, with (] = Al
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2. Left- and right-normalized states

Computation of expectation and matrix elements is simpler if the MPS is built from tensors
relating orthonormal spaces. Such tensors are called 'left-normalized’ or 'right-normalized.

Left-normalization

A 3-leg tensor 4 “fﬁ is called 'left-normalized' if it satisfies

t xplicitly: to16 T = :
ATA -] e (AN AR 1)

Graphical notation for left-normalization: draw 'left-pointing diagonals' at vertices

A A-I §A+ p B
é‘T— 7, < N G ! = [ (1')
—é—ﬁ—(— bg (L f.‘
At

identity matrix

When all A's are left-normalized, closing the zipper left-to-right is easy, since all C (e]
reduce to identity matrices:

' ! — ol . & 2 ﬁ; (= )\
C[°] = {‘ ’ C [(k(f: E\C‘ = { I ’ C[L]K = sz“] ‘-éf = { [}
Al \ A’

— R ~ 1 'l
)
Hence:
S>> K ST ¥ —>-x x
<yly) = ro= ‘:C; —-{zl @u
T JAr0. 7 Wd., D (v)
When all matrices of a MPS are left-normalized, the matrices for site 1 to any site -C =, N
define an orthonormal state space:
A AA A A p :
Ty Ay =154, ®

X~ > \r;l ,
( ,),},/,l;\’ ) {,\' Qi = —ﬂ*:\;\ © W

close the zipper

Right-normalization

So far we have viewed an MPS as being built up from left to right, hence used right-pointing arrows
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on ket diagram. Sometimes it is useful to build it up from right to left, running left-pointing arrows.

Building blocks:

x B
(x> = IGN>:B°(,.) Io‘”
left-to-right indeé:rder as in diagram "
\
| F> - ] €d 7[ G_H-‘> 3 FGH.'O(BO‘GN ' F ¢ l € l 57”‘ (‘)
6., SW
V-1
i -
= Bt sl x4, @)
6,
= E i
Vo G"T“
(18

<f" - z’(w 'B«x%-. <6y 1<6s] £ * > Lx o)
Iterating this, we obtain kets and bras of the form Y @ oL
lyD = 161600 ... IGQB,G By N X: ) »‘~ ](: (1)

— 6\ -t oy
+ 4‘ 6-' 6;"'( 6..]
<7‘H = IO’N“ &“cn-l'g E'«\S.l <6il... <6n-1‘<5nl ‘XLM (2)
L L A P

A three-leg terror B (5 g is called right-normalized if it satisfies

’)L . "' ﬁ‘ 6 ¢ + (%I I

=1 Explicitly: LB = = & 13)

B3 . (22" - 3,7B," -1, (

Graphical notation for right-normalization: draw 'right-pointing diagonals' at vertices

S 8

DR QI .

z

B < R
ER
F o ¢

(14)

When all B's are right-normalized, closing the zipper right-to-left is easy:

{ — Y——7 T
{yig) (

3 - 130

l15)

\Whan all matricrac nf 2 MDPQ ara rinht-nAarmalizad tha matricrac far citea Nl +n anv cita -’ =1 Al
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When all matrices of a MPS are right-normalized, the matrices for site N to any site -C =, N

define an orthonormal state space:

2 B B /
A W* 1Ay = 169 (8™ ™. :Bf”];\ (16)
N

—

Ny ) l} Gy = 1t O

A ~ A
close the zipper

Conclusion: MPS built purely from left-normalized ﬂ 's or purely from right-normalized B's

are automatically normalized to 1. Shorter MPSs built on subchains automatically define orthonormal

state spaces. @
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3. Matrix elements of local operators MPS-1.3

Local operators act non-trivially only on a few sites (e.g. only one, or two nearest neighbors).

One-site operator

" . Gl( 6‘
Ol‘e] = ‘62 > O e[. <€C\ CI)
A
E.g. for spin /; : (5%)6; =3(! 2 (S ._)"b, =(2L) ,(S _\66 = (5 :3 )

In the Hilbert space of full system, one-site operator acts as unit operator on all sites except Je :

6‘.@] = & gs'ls‘...oeiez.--gs:JVN(gl }\ } } 1:!. } *+ (3)

—X
0% 2

Matrix element between two MPS:

N
({i"l Ot ¢ = by )
R

The computation of such matrix element is simplest if \'tDand W 7 are in 'site-canonical form’,

i.e. constructed from left- or right-normalized tensors for sites earlier or later than £ , respectively

site £ is special:

- 6 6
) = ey (A% A% % g %) L
JL P
] ] ’ 7 6,/
~ { NG ~5- NG' ~6 A’G 1 4 ]
- l'.‘ A ¢t L L+t N * _9_}_4_ ‘)
) = 65 (4 H% goe | 3) Lor
A A A M B & B M
Matrix element: X o S A van
G ¥ ¢
F101%Y = af h |op” s = ¢ D @
s [¢-1 (e+]
« Aededel 3 A Ay 2~
A A it

Close zipper from left using (_'_‘[ ¢-1) from left-normalized A's  [see MPS-1.1-(15)],
and from right using ,'D[QHJ from right-normalized 73‘s [analogous to MPS-1.1-(20)].
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Now consider the expectation value, (4{'[ 6 \ 1}7 (i.e. drop all tilde's). The left-normalization of
A's guarantees that Cu_,] = qL. ,and right-normalization of ‘s  that Dfl’f'] =1.

M
~ t «S 6,
Hence {ylolyd = [\']lg%,'>< M 2 f 0462 Y " )
ﬁ‘(
Two-site operator (e.g. for spin chain: 52'31“ )
% Gt
- ! ! G‘lloéh
Ote,ery = ooy 057 ¢ ) Lyldsy, H “
6t Sp

Matrix elements: R AR M g
,‘ N ‘l\ S, &

< ;{:‘ 6{0,1'“-“’4) = e 4 #
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MPS-1.4

4. Various canonical MPS forms

A~ N /
'gauge freedom'

-1
MM =Muum) = FA
a A

Any matrix product can be expressed through different matrices without changing the product

Gauge freedom can be exploited to 'reshape' MPSs into particularly convenient, 'canonical' forms

.
>l

Left-canonical (Ic-) MPS: X . N ‘
Q. GN

N
©
YOy

1

B

(> =18 (A% A™) ata
Y ——c < < X
Right-canonical (rc-) MPS:
SR
¥y = (&) (B%... %) 2 - 4 [}-73 o
N <!
. . . M MEep
Site-canonical (sc-) MPS: ¥ ¥ 4] N - 12]
[ 'o( I [ I [ = 3 1 < F
\.f,'—v_-—' 0‘2 \_____’_f_"_{ ((,Te)
l°L>L \P?g 3

[(f) = I€>N(n6|..' H€¢> m]P(SG‘“ %6”3 = Z \F?\ > 3[23 (A

l\ can be chosen diagonal

How can we bring an arbitrary MPS into one of these forms?

Transforming to left-normalized form
Mt M MM @)
. . > 6 Y X—1> —> > 4 ¥ ’
Given: (4D = |5'>~(M M) 4‘ 4 4 +
S by
[or with index: IS“> = BT A ] ~
A A M M M
MGI to MG-L_( ¥ q 7 j 2 ' I , X (é)

Goal : left-normalize
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x X (6
Goal : left-normalize M Mf“"“ 1 1 1 :{ 1 ©

!
Strategy: take a pair of adjacent tensors, MM, and use SVD,

net = usum = Ad i A=u . b =sdtu @

Y
o« B )
M m! VD w“ s v M , g M
o o = e =« X « (g
RN LT TR
- & ¢

Mo‘rﬁ e = (Mdr;\\(éA 'VJW M M;‘> =, A w

A p 4
£, o fa_
The properly AL = 1 ensures left-normalization: A A = _{_ (o)
5y
Truncation, if desired, can be performed by discarding some of e 1
The smallest singular values, 102
T ! el
— but (10) remains valid! .
> — 2 (but (10) ) 5 At
ﬂ =\ ﬂ =f Kv
: W05 | A
Note: instead of SVD, we could also me QR (cheaper!) .
T e
By iterating, starting from /1 € 24 ®7 e left-normalize M" to Mo-‘“ ,
M M M MM A A M M M
To left-normalize the entire MPS, choose ,C = I\/ .
Ny
As last step, left-normalize last site using SVD on final il
6w
S
” Voo v g M wsvy :
Mjfﬂ/,—_- U {S,\/ { 2 " =1 |l t |":m'):;-¥«_"Q (“)
—m— s )
HJW, S, ! ¢ 6y 6'”)

diamond indicates

com: (4> = (5,07 A7)
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lcform: | 'L() = (a’%(ﬂs'._ A 6M> S,

uialnivi v innidivaLco

single number

T
The final singular value, S, determines normalization: <L[,(q>= li.' G
Transforming to right-normalized form
MM mmm
_ N ; ¥ X
Given:  (4) = [§) (M& .. M) 4‘ ! '{ +
N S, Gy
[or with index: | S, = Siepér<rer> ]
. . M mMy B
Goal : right-normalize M '~ to M **! * 1 ‘ } ] I ; 8
§ Op: Gy
I
Strategy: take a pair of adjacent tensors, /1 , and use SVD:
1’ . ~ M' 1
4 - MUsSY B with M- us B=1y (13
Mmoo svD, M M S \l o M b
o _éﬁé—ol' - —_————) \Lr ~— Y o (h‘,\
¢ IR A 4o
T 6" G G G'
e [ 6t 6 + o ~ ¢7' 6'0<|
AL A CITEEL) TN B L SR
f 3 A
t : o 1
Here, \ ( = _'L ensures right-normalization: E B = 1 . (16)
) 6
Starting form ] Y w1V , move leftward up to M 2/16“”
To right-normalize entire chain, choose / and at last site, [ = |
“ | t
Ml g = [,( S, \/ 62 S¢ determines normalization. (4

“W‘J W lf—y—)
=\ s( B 6, A
{
Exercise
(a) Right-normalize a state with right-pointing arrows!
Hint: start at M 6= m

and note the up = down changes in index placement.

X > T4
ArA 4
)] Y]

MM s\/D“MMS\l

« mx = —7—~—e——-—>-—0—<—1— —3—/1-——4—1— 08

-
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« eﬂ;T x - ——»—o—e—I— —>—1——<—1~ 08

\[\ both indices upstairs!

'L (.’:o‘ ( ( AT p + & ) ~ 6 6!
M rs f/] I = M (: (A A S V ,’\, = M E 2 ((‘1)
(b) Left-normalize a state with left-pointing arrows! xm(—{\—x
Hint: startat ¢y
MM WS e AW .
x = << = x—W 20)
} X { ¢ } %A« 4\
Gy Co 6o 6, 6. 62
[ both indices upstairs! )
61 & Gl _ (s, )( 1Yt X gL[g> &A~ 6,
M, Ma& F = (l/( ) 3 V,X M“ = H‘ M/}‘ ¥ (21)
Transforming to site-canonical form
~ C/_ —

TTTTTTTTTTTTT“TT*W

( “>L “ \F>K

Left-normalize sites | to £-t , starting from site @2)
Then right-normalize sites & to L«\ , starting from site A/ .
Result:
6 3 o, \' “o6
142 = 16 1g,) (%' .38 “){:' le) L6p ) \6D (.. A%) M %f
1\ £ o2, (29
Aol 6
= \{'=>g\5}7\0‘7L M* ef (z4)
The states { . % P) = ‘ rﬁ >g‘ 6? [ >L form an orthonormal set:
o o' g
{ !/
o0, P \%'O'"F> = ¥ 8 ‘;§ . (20

(Exercise: verify this, using A {H =71 and B 6+= 1)
N
This is 'local site basis' for site - . Its dimension 'Dd- d- D{g is usually <<< A of full Hilbert space.

Transforming to bond-canonical form
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Transforming to bond-canonical form

= t +
Start from (e.g.) sc-form, use SVD for M = l,( S V , combine © V with neighboring &,
or D 1A with neighboring A

(D(-\AAS&B

T“FTT‘T TREET A st w

mvolves involves
sites /41 to N sites | to

/‘7 = S U+ A= L :’B = \/+B (Exercise: add indices!) (¢

The states | p ) VY = 1 A 7K‘ 1! '7L form an orthonormal set.

- - - {
! "N = 1 A 29)
CANIna Y= 8 8 ¢
This is called the 'local bond basis for bond £ ' (from site L to e ). It has dimension .4

( + = dimension of singular matrix 5 ).

R ® A 5353

A A M B
TRRTT C TRereer W st e
6

nvolves
IS|tvesV toN |Sri1t\:aoslvels to &-1
F = (AS \)+ ;]V - AU , B =\)+ (Exercise: add indices!) (»¢)

I')(I VY = 1 '}\‘ 711[ 1 VL form 'local bond basis' for bond £ -\  (from site -1 to ¢ ).
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