Fakultät für Physik
print

Links und Funktionen

Navigationspfad


Inhaltsbereich

Tensor Networks 2022 – Lecture notes

Lecture notes

Lecture style

Lecture Date Notes Pages Topic
L26 26.07.22 pdf F-PEPS
F-PEPS.1
F-PEPS.2
F-PEPS.3
F-PEPS.4
Fermionic PEPS
1. Parity conservation
2. Fermionic signs
3. Jump move
4. Examples
L25 14.07.22 pdf CanF
CanF.1
CanF.2
CanF.3
CanF.4
2 D Canonical Forms, Isometric PEPS
1. Canonical form for bond in 2D tensor network
2. Full environment truncation
3. Isometric PEPS: Moses move
4. Isometric PEPS: Applications
L24 19.07.22 pdf TNR
TNR.1
TNR.2
TNR.3
TNR.4
TNR.5
TNR.6
TNR: Tensor network renormalization, MERA
1. Motivation
2. TNR idea
3. Projective truncation
4. TNR details
5. TNR results in MERA
6. TNR benchmark results
L23 14.07.22 pdf TRG-II
TRG-II.1
TRG-II.2
TRG-II.3
TRG-II.4
TRG-II.5
TRG-II.6
TRG-II: Graph-independent local truncations (Gilt)
1. Motivation
2. Why is TRG insufficient?
3. Environment spectrum
4. Gilt: Graph-independent local truncations
5. Gilt-TNR
6. Benchmark results
T07 13.07.22 Tutorial: NRG II: Finite-size spectra, static correlations
L22 30.07.22 pdf TRG
TRG-I.1
TRG-I.2
TRG-I.3
TRG-I.4
Tensor renormalization group (TRG)
1. TRG for 2D classical lattice models
2. TRG for quantum lattice models
3. Second renormalization (SRG) of tensor network states
4. Core tensor renormalization group (CTRG)
L21 07.07.22 pdf PEPS-II
PEPS-II.1
PEPS-II.2
PEPS-II.3
PEPS II: contractions via MPS techniques
1. PEPS via finite-size MPS
2. Infinite-size PEPS (iPEPS)
3. Corner transfer matrix (CTM)
T06 06.07.22 Tutorial: Wilson chain, TDVP, Variance (continued)
L20 05.07.22 pdf PEPS-I
PEPS-I.1
PEPS-I.2
PEPS-I.3
PEPS-I.4
PEPS I: Projected entangled-pair states
1. Motivation and Definition
2. Example: RVB state
3. Example: Kitaev's Toric Code
4. Example: Resonating AKLT state
L19 30.06.22 pdf TS
TS-II.1
TS-II.2
TS-II.3
TS-II.4
Tangent space methods II: TDVP, energy variance
1. 1-site TDVP
2. 2-site projectors
3. 2-site TDVP
4. Energy variance
T06 29.06.22 Tutorial: Wilson chain, TDVP, Variance II
L18 28.06.22 pdf TS
TS-I.1
TS-I.2
TS-I.3
TS-I.4
TS-I.5
Tangent space methods (TDVP)
1. Motivation: why is tangent space useful?
2. MPS canonical forms
3. Kept and discarded spaces
4. Kept and discarded projectors
5. Tangent space projector
T05 22.06.22 Tutorial: DMRG II: 2-site, iTEBD (continued)
L17 21.06.22 pdf NRG-IV
NRG-IV.1
NRG-IV.2
NRG-IV.3
NRG-IV.4
NRG IV: Spectral function, fdm-NRG
1. MPS notation for discarded/kept states
2. Complete many-body basis
3. Full-density-matrix NRG (fdmNRG)
4. Spectral functions for SIAM
L16 16.06.22 pdf NRG-III
NRG-III.1
NRG-III.2
NRG-III.3
NRG-III.4
NRG-III.4
NRG III: Thermal and dynamical quantities
1. Thermodynamic observables
2. Lehmann representation of spectral functions
3. Single-shell and patching schemes
4. Graphical notation for basis change
5. MPS notation for discarded/kept states
T05 15.06.22 Tutorial: DMRG II: 2-site, iTEBD
L15 14.06.22 pdf NRG-II
NRG-II.1
NRG-II.2
NRG-II.3
NRG-II.4
NRG-II.5
NRG II: RG flow, fixed points
1. General RG concepts
2. NRG iteration scheme from RG perspective
3. Uncoupled bath Hamiltonian: fixed points
4. Kondo model: fixed points and RG flow
5. Anderson model: fixed points and RG flow
L14 09.06.22 pdf NRG-I
NRG-I.1
NRG-I.2
NRG-I.3
NRG-I.4
NRG I: Numerical Renormalization group - Wilson chain
1. Single-impurity Anderson model
2. Logarithmic discretization
3. Wilson chain
4. Iterative diagonalization
T04 08.06.22 Tutorial: DMRG I: 1-site ground state search (continued)
L13 07.06.22 pdf Sym-III
Sym-III.1
Sym-III.2
Sym-III.3
Sym-III.4
Symmetries III: Outer multiplicity, X-symbols
1. Motivation
2. Outer multiplicity
3. Arrow inversion
4. Pairwise contraction and X-symbols
L12 02.06.22 pdf Sym-II
Sym-II.1
Sym-II.2
Sym-II.3
Sym-II.4
Sym-II.5
Sym-II.6
Sym-II.7
Symmetries II: Non-Abelian (optional)
1. Motivation, SU(2) basics
2. Tensor product decomposition
3. Tensor operators
4. Example: two spin 1/2's
5. Example: three spin 1/2's
6. A-matrix factorizes
7. Bookkeeping for unit matrices
T04 01.06.22 Tutorial: DMRG I: 1-site ground state search
L11 31.05.22 pdf DMRG-II
DMRG-II.1
DMRG-II.2
DMRG-II.3
DMRG-II.4
DMRG I2I: Original DMRG, tDMRG, finite temperature (XTRG, purification)
1. Original DMRG
2. tDMRG
3. Exponential tensor renormalization group (XTRG)
4. Purification
L10 26.05.22 pdf Sym-I
Sym-I.1
Sym-I.1
Sym-I.1
Symmetries I: Abelian (optional)
1. Example: spin 1/2 XXZ-chain
2. Iterative diagonalization
3. QSpace bookkeeping for unit matrices
T03 25.05.22 Tutorial: SVD, MPO, Diagonalization (continued)
L09 24.05.22 pdf iTEBD
iTEBD.1
iTEBD.2
iTEBD.3
iTEBD.4
iTEBD.5
iTEBD: Infinite Time-Evolving Block Decimation
1. Vidal's Gamma-Lambda notation
2. Basic iTEBD algorithm
3. iTEBD in Gamma-Lambda notation
4. Hasting's method
5. Orthogonalization
L08 18.05.22 pdf DMRG-I
DMRG-I.1
DMRG-I.2
DMRG-I.3
DMRG-I.4
DMRG I: Density Matrix Renormalization Group - ground state search
1. Single-site optimization
2. Lancos Method
3. Excited states
4. Two-site update
L07 17.05.22 pdf MPS-IV
MPS-IV.1
MPS-IV.2
MPS-IV.3
MPS-IV.4
MPS IV: Matrix product operators
1. Applying MPO to MPS yields MPS
2. MPO representation of Heisenberg Hamiltonian
3. Applying MPO to mixed-canonical state
4. MPS representation of Fermi sea
T03 17.05.22 Tutorial: SVD, MPO, Diagonalization
L06 12.05.22 pdf MPS-III
MPS-III.1
MPS-III.2
MPS-III.3
MPS-III.4
MPS III: Translationally invariant MPS, AKLT model
1. Transfer matrix
2. AKLT model
3. AKLT ground state
4. Transfer operator and string order parameter
L05 11.05.22 pdf MPS-II
MPS-II.1
MPS-II.2
MPS-II.3
MPS-II.4
MPS II: Diagonalization, fermionic signs
1. Basis change.
2. Iterative diagonalization of short spin chain.
3. Spinless fermions
4. Spinful fermions
T02 10.05.22 Tutorial: Tensor network basics (cont.)
L04 05.05.22 pdf MPS-I
MPS-I.1
MPS-I.2
MPS-I.3
MPS I: Basic properties
1. Overlaps, matrix elements.
2. Left- and right-normalized states.
3. Canonical MPS forms (left, right, site, bond)
L03 04.05.22 pdf TNB-III
TNB-III.1
TNB-III.2
TNB-III.3
TNB-III.4
Tensor Network basics III
1. Unitaries and isometries
2. Singular value decomposition (SVD)
3. Schmidt decomposition
4. Reshaping generic tensor into MPS form
T02 03.05.22 Tutorial: Tensor network basics
T01 28.04.22 Tutorial: MATLAB 101
L02 27.04.22 pdf TNB-II
TNB-II.1
TNB-II.2
TNB-II.3
Tensor Network basics II
1. Covariant index notation
2. Arrow conventions
3. Iterative diagonalization
L01 26.04.22 pdf TNB-I
TNB-I.1
TNB-I.2
TNB-I.3
Tensor Network basics (TNB) I
1. Notation for generic quantum lattice systems.
2. Entanglement entropy and area laws
3. Tensor network diagrams