Fermionic PEPS F-PEPS.1

Fermion signs in 2D fermionic tensor networks can be kept track of using two 'fermionization rules'.
[Corboz2009] with Vidal and [Corboz2010b] with Evenbly, Verstraete, Vidal first introduced them, for MERA.
[Corboz2010b] with Orus, Bauer, Vidal adapted them to PEPS context.

This is the approach described in [Bruognolo2020] and presented in this lecture.

Key ingredients: (i) use only positive-parity tensors
(ii) replace line crossings by fermion SWAP gates

Equivalent formulations had also been developed by:

[Barthel2009] with Pineda, Eisert, [Pineda2010] with Barthel, Eisert

[Kraus2010] with Schuch, Verstraete, Cirac

[Shi2009] with Li, Zhao, Zhou

[Bultinck2017a] with Williamson, Haegeman, Verstraete, building on [Bultinck2017] (same
authors); these papers use the mathematical formalism of 'super vector spaces'.

1. Parity conservation

o)
Fermionic Hamiltonians preserve parity of electron number: ? = (.. (3 Q)
a\
alba Aba as ~dad A~ ~ A
H = ¢c #«# cCcce «~ Cc¢7 +~CC (H,P) = o @

=>  all energy eigenstates are parity eigenstates, too, hence may be labeled by parity eigenvalue:

a n

Wikg) = E"~? kp) , Plep) = ol ¥ p =t (2, -symmetg")
So, we may agree to work only with states of well-defined parity.

Example: state space of local fermions, lv\ 1, Ny, ?5 ()

‘07 :=—lo,o;+) ; I‘N.)) = C:\\t ('.‘1‘ \03 = \l’ l; +>
)
)= oy i=lie; - W= o) = lof; =),

Every line in tensor network diagram represents a state space, hence also carries a parity index.

[When keeping track of abelian symmetries, parity label can be deduced from particle number: P = (‘:)Q ]
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Enforcing Z‘stm metry [Corboz2010b, Sec.II.F]

To enforce 2 ; Symmetry on tensor network: choose all terms to be 'parity preserving'.

Rule (i):  For every tensor, the total parity is positive:

n-leg tensor: H“h = o ff Bmzm““ = Plo)plete) . plta) * 1 ©
Examples:

o

1)) & |f7 = ID,o;«-)* !l,oj-—> ?oes

1ty W e; =Y PRl
= (#)-Y)(-) = I

149 \t) = |io:- {11, 4 oc

R oy g I P - ey = s

l' lo 1.=%

‘V\“:o;'/\b) l“i\‘n" = ‘>
64

o 61: GJ: = ) ~
I ¢ P 6 6" (PG' Po‘ ( PG‘ P"- ) +
CT C L ) (->
6‘1: ﬁ ya; CJ,rr and ( ! both change parity by (~)
My = 02 Ing, Ny=a? so overall changeis (-) = +
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2. Fermionic signs F-PEPS.2
Lo b4 +

-+

- = = C- - - - (— - _ -
G G % . G ==, cego= 8,7 - ;5
To keep track of these signs, we choose an ordering convention, say !\ P S £, and define:
’ ’
+ 4
‘lll Ly oee, 1L> =+ ¢ - Chc, \3"01,...,%3
')
We have to keep this order in mind when evaluating matrix elements. Example: consideraf =3
Lot Fod
') = lo1)) = c3c21.lo§/ 1%y = [1 0 = 1, ¢ ¢y (&)
)
t SRS t 4
dy'leiaaly) = Lle e 10 ¢y s qglod= = Coley ¢ ep &\ 10) = =
—— ‘-—-—‘v_—-—' —
8 ‘_ﬂ_; 17.
Let us repeat this computation in MPS language:  [Corboz2009, App. Al L———T

1
Order of vertical lines, from left to right, indicates order of operators acting on | 0 , from right to left.
A
Horizontal lines show how to move operators in © (here c*‘ ¢z ) into appropriate 'slots' in 1> or (%) |
Line crossings indicate operator swaps. An overall minus sign arises whenever two odd-parity lines cross,

because then two fermion operators are exchanged.

z_=[ z 3
Gl T o © = o)
- A
- 1. {_\v_ parity of indéx 1) = lo,0.0)
] . .
+
~ J—p Ct 4
= | o - G Ll) = [0, 1,09
&
3
* . - bt
s — ddge = o
m
S Cs
T
: tzc2G 1,10 =lo 1 o)
<Q [ move slot 1 into a position T e
where ¢t can directly ¢ =4; 4
act on it + 4 crossing: | (+) + i(és/ézjb)
—+G +,— crossing:|(+) 4 CT
~, = crossing:| (- ¥ t
move slot 1 back into ) - “ 13 G ‘03
its original iti
its original position 5 13 C't c-l-, 0y = -1 , | ,D)
- [ A
= = f o+
o ¢,
o
~ + k4
- CZC‘LC. [0) = -~ [ |l o o) )
— < - ~~ / !
é. &) Cy =ii
¢ -~ agloy = ~loo o0
— / /
- A 1 1 <¢o,0, 0l =1,
N\
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SWAP gates

Line crossings keep track of operator orderings.
(=) needed only for exchanging two lines which both host a fermion, i.e. which both have parity (-).

S 4 14 4 4 1 4 4
10rC 10rC lorc C+ 1orC C+ ct

¢ + . _ _
«) *+) )

To encode this compactly, introduce SWAP gate whose value depends on parity of incoming lines.

{

Slsd e SP,X SD‘F .S(&,[S)

- i o = ) = (-
o B S(N,{Q = { ( f pé) PE )

¢ otherwise

Rule (ii): (8 i

Operators [Corboz2010b, Sec. IIL.F]
Some matrix elements of operators involving fermions need minus signs.

Example: spinless fermions, consider two sites £, £ , with local basis

)
lc:c &= U @— ‘°t'°' , G e’

L

~

Two-site operator: O

Z ¢ mo” . 06y 6\

n

/

with matrix elements (£ <2)

0'; 6 VAN N (‘\‘ a_
0" g = (yslol ) = <o) Q’ A 1900
Examples: " only non-zero element:
. < L0z
Hopping: O = ¢ C@' / 0* (o a\ l {; G cjﬂo o_\ s+
!,
~ -‘-\ ‘
6=c¢;Y Oot‘h (oo-\c-c_tcc{ \
g A 9, f
Pairing: O = ¢:¢ L e ) { N = -1
! l ! O lp_"f = <O‘¢ D“ CE Cl C; Cf, ‘01 (Jz

L ]

When applying such an operator
to a generic state, line crossings appear.
These yield additional signs, which

can be tracked using rule (ii).
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Parity changing tensors

c“’ and C change parity; but rule (i) demands: use only parity-conserving tensors!

Remedy: add additional leg, with index taking just a single value, §:= [ with parity P(s) = ()
+

which compensates for parity change inducedby ¢ or ¢

0 C = (C )86 only nonzero  — t
y element: =4 = Lolccloh =g
¢ 4 40

Total parity: ?66 c = P(%)P(G‘ 3P(5") = CYEYN-DY = (1)

4 . oy
t.¢
C+ "'3 = (C, ) only nonzero C—‘. - = (o \C C:} (o) = (
6 element: -
46" —1 l
¢!
Total parity: T ¢ § = P (6‘ 3?(65 P(S ) = (W) = (B
4 ‘4% - 4% T4 4
Two-site operator C L ¢ i = Ci — é> — C i 1= C+ C-
is represented as 'f . + . +2’ "}
. 6‘1 4 GI +4

Since 5 carries just a single value, a SWAP gate involving crossing of $ -line and physical & -line
can be simplified to a parity operator acting on latter:

-
+|6 —|& & 3

_%7_8 - —$ = +§=_[I:|_5
+

-

o - -

S(6I$> " + -
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3. Jump move

[Corboz2009, App. C], [Corboz2010b, p. 9]

F-PEPS.3

Because all tensors by construction preserve parity,
lines can be 'dragged over tensors':

(Shorthand: (6 = P; )

‘ ? \ P
? 4\ 1) \@
?LX ' Ps = ?3 / ?b

P P

before jump after jump
This is trivially true for P’ = +)
since then all swap signs are + 5(p;/+) = () forall  p;
Consider P' = (-):
¥ "
2-leg tensor: = ~_ [%
both legs have W— - -
same parity ?
P
SWAP sign: Sk, ) =
|3 P
3-leg tensor: B = .
\ e ) - -
‘?r?t
SWAP sign: (Pr,p0) S’(?'.Pz,-\ 5(‘)(1 =) S(p= ~)
L S(-,-) = ) S(+, - )S(~,7) = @) = &)
O R I B S O ST
bt S+ =) = ) S(+,-)5(+ -y = @) = )
-, - S+ =) = () (=, =S~ ,-) = &)-)= )

General argument: parity-preserving tensor has even number of minus-parity lines:

eUeu
(sign)before *  (SigN)after = Tr S(?u' - ) Tr S(?ﬁ , ) = (- ) = (+)
04 & before F G after
all minus-parity legs all minus-parity legs total number of
cut by 'before' line cut by 'after' line minus-parity lines,
which is even
>

(sign)vefore = (SigN)after v
Jump move allows tensor network diagrams to be rearranged according to convenience:

2 I ! ]

O
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4. MPS examples [Bruognolo2017] F-PEPS.4

Nearest-neighbor <1H C_{; Cy | 1D =

expectation value
needs no swap gates:

Time evolution of

non-r.\earest-neighbor it Lo “"C’T)/j
hopping operator: (1\(’. (s ¢ Lt/ =

L/
Due to jump moves, the \——“——9

red line and light brown lines

effect as

Jordan-Wigner

string

connecting (, and C;
are equivalent (use one or the other)

Fermionic order in a PEPS

Choose some ordering for open indices and stick to it!

03,0 1022} [075) 1030} 1025} lote) losd lo3s) 105

ig:.s) {
CAPPRNN G B U B PV I Y B L)
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Absorbing SWAP gates




