

Fermion signs in 2D fermionic tensor networks can be kept track of using two 'fermionization rules'. [Corboz2009] with Vidal and [Corboz2010b] with Evenbly, Verstraete, Vidal first introduced them, for MERA. [Corboz2010b] with Orus, Bauer, Vidal adapted them to PEPS context. This is the approach described in [Bruognolo2020] and presented in this lecture.

Key ingredients: (i) use only positive-parity tensors
(ii) replace line crossings by fermion SWAP gates

Equivalent formulations had also been developed by:

[Barthel2009] with Pineda, Eisert, [Pineda2010] with Barthel, Eisert
[Kraus2010] with Schuch, Verstraete, Cirac
[Shi2009] with Li, Zhao, Zhou
[Bultinck2017a] with Williamson, Haegeman, Verstraete, building on [Bultinck2017] (same authors); these papers use the mathematical formalism of 'super vector spaces'.

1. Parity conservation

Fermionic Hamiltonians preserve parity of electron number:

$$\hat{P} = (-1)^{\hat{N}} \quad (1)$$

$$\hat{H} = \hat{c}^\dagger \hat{c} + \hat{c}^\dagger \hat{c} \hat{c}^\dagger \hat{c} + \hat{c}^\dagger \hat{c}^\dagger + \hat{c} \hat{c} , \quad [\hat{H}, \hat{P}] = 0 \quad (2)$$

⇒ all energy eigenstates are parity eigenstates, too, hence may be labeled by parity eigenvalue:

$$\hat{H}|\alpha, p\rangle = E_{\alpha, p}|\alpha, p\rangle , \quad \hat{P}|\alpha, p\rangle = p|\alpha, p\rangle , \quad p = \pm \quad ('Z_2\text{-symmetry}') \quad (3)$$

So, we may agree to work only with states of well-defined parity.

Example: state space of local fermions, $|n_\uparrow, n_\downarrow; p\rangle$ (4)

$$\begin{aligned} |0\rangle &:= |0, 0; +\rangle , & |\uparrow\downarrow\rangle &:= c_\uparrow^\dagger c_\downarrow^\dagger |0\rangle := |1, 1; +\rangle \\ |\uparrow\rangle &:= c_\uparrow^\dagger |0\rangle := |1, 0; -\rangle , & |\downarrow\rangle &:= c_\downarrow^\dagger |0\rangle := |0, 1; -\rangle , \end{aligned} \quad (5)$$

Every line in tensor network diagram represents a state space, hence also carries a parity index.

[When keeping track of abelian symmetries, parity label can be deduced from particle number: $p = (-1)^Q$]

To enforce \mathbb{Z}_2 symmetry on tensor network: choose all terms to be 'parity preserving'.

Rule (i): For every tensor, the total parity is positive:

$$\text{n-leg tensor: } A_{\alpha_1 \alpha_2 \dots \alpha_n} = 0 \quad \text{if} \quad P_{\alpha_1 \alpha_2 \dots \alpha_n} := p(\alpha_1) p(\alpha_2) \dots p(\alpha_n) \neq 1 \quad (6)$$

Examples:

$$\begin{array}{ccc} \begin{array}{c} \alpha \\ \xrightarrow{\quad} \\ |0\rangle \end{array} & = & \begin{array}{c} \xrightarrow{\quad} \\ |0,0;+> \end{array} \begin{array}{c} \xrightarrow{\quad} \\ |1,0;-> \end{array} \\ \begin{array}{c} \beta \\ \xrightarrow{\quad} \\ |1\rangle \end{array} & & \begin{array}{c} \xrightarrow{\quad} \\ |1,0;-> \end{array} \end{array} \quad P^{\alpha\beta} = P_\alpha P_\beta = (+)(-)(-) = +$$

$$\begin{array}{ccc} \begin{array}{c} |1\rangle \xrightarrow{\quad} \\ \downarrow \\ |1\rangle \end{array} & = & \begin{array}{c} \xrightarrow{\quad} \\ |1,0;-> \end{array} \begin{array}{c} \xrightarrow{\quad} \\ |1,1;+> \end{array} \\ \begin{array}{c} |0\rangle \xrightarrow{\quad} \\ \downarrow \\ |0\rangle \end{array} & & \begin{array}{c} \xrightarrow{\quad} \\ |0,1;-> \end{array} \end{array} \quad P^{\alpha\sigma} = (-)(-)(+) = +$$

$$\begin{array}{ccc} \begin{array}{c} |n_\uparrow=0, n_\downarrow> \\ \uparrow \sigma_\uparrow \quad \uparrow \sigma_\downarrow \\ \boxed{+} \\ C_\uparrow \quad C_\downarrow \\ \uparrow \sigma'_\uparrow \quad \uparrow \sigma'_\downarrow \end{array} & & \begin{array}{c} |n_\uparrow, n_\downarrow=1> \\ \sigma'_\uparrow \quad \sigma'_\downarrow \end{array} \\ P^{\sigma'_\uparrow \sigma'_\downarrow} = \underbrace{(P_{\sigma'_\uparrow} P_{\sigma'_\uparrow})}_{(-)} \underbrace{(P_{\sigma'_\downarrow} P_{\sigma'_\downarrow})}_{(-)} = + \end{array}$$

C_\uparrow^+ and C_\downarrow^+ both change parity by $(-)$
so overall change is $(-)^2 = +$

$$c_\ell c_{\bar{\ell}} = -c_{\bar{\ell}} c_\ell, \quad c_\ell^\dagger c_{\bar{\ell}}^\dagger = -c_{\bar{\ell}}^\dagger c_\ell^\dagger, \quad c_\ell^\dagger c_{\bar{\ell}}^\dagger = \delta_{\ell\bar{\ell}} - c_{\bar{\ell}}^\dagger c_\ell^\dagger$$

To keep track of these signs, we choose an ordering convention, say $1, 2, \dots, \ell$, and define:

$$|1, 1_2, \dots, 1_\ell\rangle = + c_\ell^\dagger \dots c_2^\dagger c_1^\dagger |0, 0_2, \dots, 0_\ell\rangle$$

We have to keep this order in mind when evaluating matrix elements. Example: consider $\ell = 3$:

$$|\psi\rangle = |0, 1, 1\rangle = c_3^\dagger c_2^\dagger c_1^\dagger |0\rangle, \quad |\psi'\rangle = |1, 1, 0\rangle = 1_3 c_2^\dagger c_1^\dagger |0\rangle$$

$$\langle \psi' | c_1^\dagger c_3 | \psi \rangle = \langle 0 | c_1 c_2 1_3 c_1^\dagger c_3 c_2^\dagger c_1^\dagger | 1 | 0 \rangle \stackrel{(-)}{=} 1_3 = - \langle 0 | c_1 c_2 c_2^\dagger c_1^\dagger | 0 \rangle \stackrel{1_2}{=} 1_1$$

Let us repeat this computation in MPS language: [Corboz2009, App. A]

Order of vertical lines, from left to right, indicates order of operators acting on $|0\rangle$, from right to left.

Horizontal lines show how to move operators in $\hat{\phi}$ (here c_1^\dagger, c_3) into appropriate 'slots' in $|\psi\rangle$ or $|\psi'\rangle$.

Line crossings indicate operator swaps. An overall minus sign arises whenever two odd-parity lines cross, because then two fermion operators are exchanged.

SWAP gates

Line crossings keep track of operator orderings.

(-) needed only for exchanging two lines which both host a fermion, i.e. which both have parity (-).

To encode this compactly, introduce SWAP gate whose value depends on parity of incoming lines.

Rule (ii):

$$S^{\beta' \alpha'}_{\alpha \beta} := S^{\beta'}_{\alpha} S^{\alpha'}_{\beta} S(\alpha, \beta)$$

$$S(\alpha, \beta) := \begin{cases} -1 & \text{if } P(\alpha) = P(\beta) = (-) \\ +1 & \text{otherwise} \end{cases}$$

Operators

[Corboz2010b, Sec. III.F]

Some matrix elements of operators involving fermions need minus signs.

Example: spinless fermions, consider two sites $\ell, \bar{\ell}$, with local basis

$$|\sigma_\ell \sigma_{\bar{\ell}}\rangle = (c_{\bar{\ell}}^\dagger)^{\sigma_{\bar{\ell}}} (c_\ell^\dagger)^{\sigma_\ell} |0_\ell, 0_{\bar{\ell}}\rangle, \quad \sigma_\ell \in \{0, 1\}$$

Two-site operator: $\hat{O} = \sum |\sigma_\ell \sigma_{\bar{\ell}}\rangle O^{\sigma_\ell \sigma_{\bar{\ell}}}_{\sigma_\ell \sigma_{\bar{\ell}}} |\sigma_\ell \sigma_{\bar{\ell}}\rangle$,

with matrix elements $(\ell < \bar{\ell})$

$$O^{\sigma_\ell \sigma_{\bar{\ell}}}_{\sigma_\ell \sigma_{\bar{\ell}}} = \langle \sigma_{\bar{\ell}} \sigma_{\bar{\ell}} | \hat{O} | \sigma_\ell \sigma_{\bar{\ell}} \rangle = \langle 0_\ell 0_{\bar{\ell}} | (c_\ell^\dagger)^{\sigma_\ell} (c_{\bar{\ell}}^\dagger)^{\sigma_{\bar{\ell}}} \hat{O} (c_{\bar{\ell}})^{\sigma_{\bar{\ell}}} (c_\ell)^{\sigma_\ell} | 0_\ell 0_{\bar{\ell}} \rangle$$

Examples:

Hopping: $\hat{O} = c_\ell^\dagger c_{\bar{\ell}}, \quad O^{0_\ell 0_{\bar{\ell}}}_{0_\ell 0_{\bar{\ell}}} = \langle 0_\ell 0_{\bar{\ell}} | c_\ell^\dagger c_{\bar{\ell}} c_{\bar{\ell}}^\dagger c_\ell | 0_\ell 0_{\bar{\ell}} \rangle = +1$

$\hat{O} = c_{\bar{\ell}}^\dagger c_\ell, \quad O^{0_{\bar{\ell}} 0_\ell}_{0_{\bar{\ell}} 0_\ell} = \langle 0_\ell 0_{\bar{\ell}} | c_{\bar{\ell}}^\dagger c_\ell c_\ell^\dagger c_{\bar{\ell}} | 0_\ell 0_{\bar{\ell}} \rangle = +1$

Pairing: $\hat{O} = c_{\bar{\ell}} c_\ell, \quad O^{0_\ell 0_{\bar{\ell}}}_{0_\ell 0_{\bar{\ell}}} = \langle 0_\ell 0_{\bar{\ell}} | c_{\bar{\ell}} c_\ell c_{\bar{\ell}}^\dagger c_\ell^\dagger | 0_\ell 0_{\bar{\ell}} \rangle = -1$

When applying such an operator to a generic state, line crossings appear.

These yield additional signs, which can be tracked using rule (ii).

Parity changing tensors

c^\dagger and c change parity; but rule (i) demands: use only parity-conserving tensors!

Remedy: add additional leg, with index taking just a single value, $\delta := \sigma$ with parity $p(\delta) := (-)$

which compensates for parity change induced by c^\dagger or c :

$$\delta \rightarrow \begin{array}{c} \uparrow \sigma \\ \square c \\ \uparrow \sigma' \end{array} = (c) \delta \sigma' \sigma \quad \text{only nonzero element:} \quad \begin{array}{c} \uparrow \sigma \\ \square c_j \\ \uparrow \sigma' \end{array} = \langle 0 | c c^\dagger | 0 \rangle = 1$$

$$\text{Total parity: } P \delta \sigma' \sigma = p(\delta) p(\sigma') p(\sigma) = (-)(+)(-) = (+) \quad \checkmark$$

$$\begin{array}{c} \uparrow \sigma \\ \square c^\dagger \\ \uparrow \sigma' \end{array} \rightarrow \delta = (c^\dagger) \sigma' \sigma \delta \quad \text{only nonzero element:} \quad \begin{array}{c} \uparrow 0 \\ \square c^\dagger \\ \uparrow 1 \end{array} = \langle 0 | c c^\dagger | 0 \rangle = 1$$

$$\text{Total parity: } P \sigma' \sigma \delta = p(\sigma') p(\sigma) p(\delta) = (-)(+)(-) = (+) \quad \checkmark$$

Two-site operator is represented as

$$c_l^\dagger c_{\bar{l}} = \begin{array}{c} + \uparrow \sigma_l \\ \square c_l^\dagger \\ - \uparrow \sigma'_l \end{array} \xrightarrow{\delta} \begin{array}{c} - \uparrow \sigma_{\bar{l}} \\ \square c_{\bar{l}} \\ + \uparrow \sigma'_{\bar{l}} \end{array} := \begin{array}{c} + \uparrow \\ \square c_l^\dagger c_{\bar{l}} \\ - \uparrow \end{array}$$

Since δ carries just a single value, a SWAP gate involving crossing of δ -line and physical σ -line can be simplified to a parity operator acting on latter:

$$\begin{array}{c} + \uparrow \sigma \\ \square \hat{P}(\sigma) \\ - \uparrow \end{array} \xrightarrow{\delta} \begin{array}{c} + \uparrow \sigma \\ \square \hat{P}(\sigma) \\ - \uparrow \end{array} = \begin{array}{c} + \uparrow \sigma \\ \square \hat{P}(\sigma) \\ - \uparrow \end{array}$$

$S(\sigma, \delta) :$

+	-
+	-
+	-

$p(\sigma) :$

+	-
+	-
+	-

$$\hat{P}(\sigma) = p(\sigma)$$

3. Jump move

[Corboz2009, App. C], [Corboz2010b, p. 9]

F-PEPS.3

Because all tensors by construction preserve parity, lines can be 'dragged over tensors':

(Shorthand: $p(g_i) = p_i$)

This is trivially true for $p' = (+)$

since then all swap signs are $+ \because S(p_i, +) = (+)$ for all p_i

Consider $p' = (-)$:

2-leg tensor:

both legs have same parity

SWAP sign:

$$S(p, -)$$

$$S(p, -)$$

3-leg tensor:

SWAP sign:

$$(p_1, p_2)$$

$$S(p_1, p_2, -)$$

$$S(p_1, -) S(p_2, -)$$

$$+, -$$

$$S(-, -) = (-)$$

$$S(+, -) S(-, -) = (+)(-) = (-)$$

$$-, +$$

$$S(-, -) = (-)$$

$$S(-, -) S(+, -) = (-)(+) = (-)$$

$$+, +$$

$$S(+, -) = (+)$$

$$S(+, -) S(+, -) = (+)(+) = (+)$$

$$-, -$$

$$S(+, -) = (+)$$

$$S(-, -) S(-, -) = (-)(-) = (+)$$

General argument: parity-preserving tensor has even number of minus-parity lines:

$$(sign)_{\text{before}} \cdot (sign)_{\text{after}} = \prod_{\alpha \in \text{before}} S(p_\alpha, -) \prod_{\beta \in \text{after}} S(p_\beta, -) = (-)^{\text{even}} = (+)$$

all minus-parity legs
cut by 'before' line all minus-parity legs
cut by 'after' line total number of
minus-parity lines,
which is even

$$\implies (sign)_{\text{before}} = (sign)_{\text{after}} \checkmark$$

Jump move allows tensor network diagrams to be rearranged according to convenience:

Nearest-neighbor
expectation value
needs no swap gates:

$$\langle \uparrow | c_3^\dagger c_4 | \uparrow \rangle =$$

Time evolution of
non-nearest-neighbor
hopping operator:

Due to jump moves, the
red line and light brown lines
connecting c_2 and c_5^\dagger
are equivalent (use one or the other)

Fermionic order in a PEPS

Choose some ordering for open indices and stick to it!

Absorbing SWAP gates

