| 1. General RG ideas | [strongly recommended: read Wilson1975 !]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Wilson1975, p.777] | Renormalization group theory is technically more de-<br>manding than the theory of derivatives or Feynman<br>diagrams. However, most of the unsolved problems in<br>physics and theoretical chemistry are of the kind the<br>renormalization group is intended to solve (other kinds<br>of problems usually do not remain unsolved for long). It is<br>likely that there will be a vast extension of the renormal-<br>ization group over the next decade as the methods become<br>more clever and powerful; there are very few areas in either<br>elementary particle physics, solid state physics, or theoretical<br>chemistry that are permanently immune to this infection. |
| [Wilson1975, p.776] | The fourth aspect of renormalization group theory is<br>the construction of nondiagrammatic renormalization group<br>transformations, which are then solved numerically, usually<br>using a digital computer. This is the most exciting aspect<br>of the renormalization group, the part of the theory that<br>makes it possible to solve problems which are unreachable<br>by Feynman diagrams. The Kondo problem has been solved<br>by a nondiagrammatic computer method. The renormal-                                                                                                                                                                                      |
| [Wilson1975, p.778] | The renormalization group approach is designed to<br>handle fluctuations over many wavelengths. The renormal-<br>ization group strategy is to divide the full range of wave-<br>lengths into subranges of manageable proportions and<br>consider each subrange in sequence. For example, one can<br>consider separately the ranges of wavelengths $1-2$ Å, $2-4$ Å,<br>4-8 Å, etc.                                                                                                                                                                                                                                                                                             |

Fundamental RG concepts:

- Importance of energy scale separation: Goal: resolve splittings at smallest scales"! [Wilson1975, p. 812]
- Logarithmic discretization: interpretation -- energy space vs. real space [Krishna-murthy1980a, p.1007]
- RG transformation: [Wilson1975, p. 816]
  - $\circ\,$  integrate out high energies, get renormalized H
  - truncate
  - $\circ$  rescale
- Fixed points
  - $\circ\,$  general idea
  - $\circ\,$  Kondo model fixed points: local moment

- strong coupling

- even/odd iterations [Wilson1975, p. 820]
- RG flow railroad tracks [Wilson1975, p. 809]
- Deviations from fixed point [Wilson1975, p. 820]

The occurrence of  $\int dz \frac{1}{z}$  terms in perturbation theory indicates that 'all energy scales are equally important' (there is no characteristic energy scale which dominates).

$$\int_{E}^{2E} d\varepsilon = \lim_{\epsilon \to 0} \frac{2E}{E} = \lim_{\epsilon \to 0} \frac{1}{2} \inf_{\epsilon} \inf_{\epsilon \to 0} \inf_{$$

So, we must collect contributions from all scales, no matter how small!

Logarithmic discretization achieves that: all intervals  $I_n = \left[ \Lambda^{-\binom{n+1}{n}} \Lambda^{-n} \right]$  make similar contributions:

$$\int_{I_N} d\varepsilon \frac{i}{\varepsilon} = \int_{\Lambda^{-(n+i)}}^{\Lambda} \frac{i}{\varepsilon} = \ln \frac{\Lambda^{-n}}{\Lambda^{-(n+i)}} = \ln \Lambda \qquad (2)$$

Why integrate from high to low energies? [Wilson1975, p. 812]

Consider a general Hamiltonian of the hierarchical form

$$| \{ = H_1 + H_2 + H_3 + \dots, \\ \| \{ f_{\ell} \| \gg \| \{ H_2 \| \gg \| H_3 \| \dots \}$$
 (3)

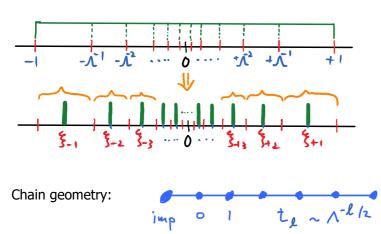
with

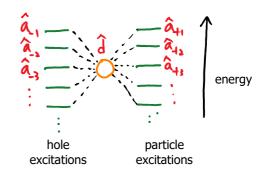
Then one should not diagonalize all terms 'at the same time', but instead first,  $H_1$  then  $H_2$ , then  $H_3$ ... Reason: suppose we have only 95% accuracy for each step, and suppose  $\| H_1 \| \sim 1$ ,  $\| H_2 \| \sim 0.01$ If we first diagonalize  $H_1$ , then we can compute matrix elements  $\langle \alpha | H_2 | \beta \rangle$  with error 0.05hence with an absolute error of 0.0005, so energy splittings due to  $H_2$  are known with error 5%(0.05 times smaller than  $\| H_2 \|$ ). By contrast, if we diagonalize  $\| H_1 + H_2$  together, their levels are known with an accuracy of 0.05. Thus the error would 500% (5 times larger than  $\| H_2 \|$ ).

Moral: always treat high energies before low energies!

#### Why map 'star geometry' to 'chain geometry' ?

Star geometry:





The coupling of <u>each</u> interval  $\mathcal{I}_{\alpha}^{\pm}$  with impurity 'renormalizes' it, as described by unitary transformation from old to new basis,  $|\beta\rangle_{\ell+1} = |\sigma_{\ell+1}\rangle|\alpha\rangle_{\ell} A^{\alpha} \delta_{\ell+1}\beta$ 

In star geometry, every new site couples to original impurity site, requiring to be evaluated. Errors accumulate: inaccuracies of early iteration affect

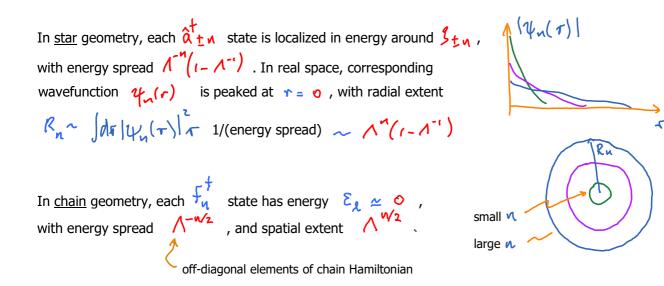
impurity-bath coupling at later iterations (because impurity itself is renormalized at each step).

In chain geometry, by contrast, every new site couples <u>only</u> to previous site, and these site-to-site couplings can be computed <u>very</u> accurately (since star-to-chain mapping is a single-particle problem).

What is nature of basis states in star and chain geometries?

[Krishna-murthy1980a, p. 1007]

< p/ds/b)



### 2. NRG iteration scheme from RG perspective

[Wilson1975, Sec VIII]; [Krishna-murthy1980a, Sec. III]

Wilson chain of length N has Hamiltonian

$$\hat{H}^{\mathcal{L}} = H_{loc}(\hat{d}_{s}, \hat{d}_{s}^{\dagger}) + \sum_{s} t_{imp} \hat{\vec{S}}_{d} \cdot \hat{f}_{os}^{\dagger} \geq \vec{e}_{ss'} \hat{f}_{os'} + \sum_{\ell=os}^{\mathcal{L}-1} \sum_{\ell=os} t_{\ell}(\hat{f}_{\ell s}^{\dagger} \hat{f}_{\ell+1s} - h.c.), \quad (I)$$

Define  $\xi_{\ell} = \Lambda^{-\ell/2} \tilde{\xi}_{\ell}$ , then for large  $\ell$  we have:

$$\widetilde{\mathcal{L}}_{\ell} \xrightarrow{\rightarrow} \frac{1}{2} \left( (\ell + \Lambda^{-1}) \right) = \mathcal{O}(\ell)$$
(2)

 $\frac{t_{imp}}{t_{imp}} \frac{t_{0}}{t_{0}} \frac{t_{1}}{t_{1}} \frac{t_{1}}{t_{1}} \frac{t_{2}}{t_{2}} \frac{t_{3}}{t_{3}} \frac{t_{4}}{t_{3}} \frac{t_{4}}{t_{3}} \cdots$ 

Therefore, lowest energy splitting of  $\left| \frac{1}{2} \right|_{\mathcal{P}}$  is

s 
$$\mathcal{O}\left(\sqrt{-(l^2-0/2)}\right)$$
. (3)  
coupling between sites  $l^{-1}$  and  $l^{-1}$ 

To iteratively resolve this splitting, define a sequence of <u>rescaled</u> Hamiltonians:

$$\widetilde{H}^{\pounds} = \bigwedge^{(\pounds - i)/2} \left( \widehat{H}^{\pounds} - E_{\mathcal{G}}^{\pounds} \right)$$
(4)
chosen to make true ground state energy of equal to zero

then lowest energy splittings in spectrum of  $\tilde{H}^{\ell}$  are  $O(\ell)$ . [Henceforth tildes indicate rescaled quantities.]

Eq. (4) implies a recursion relation:

$$\widetilde{H}^{\mathcal{L}+1} = \Lambda^{\mathcal{L}/2} \left( \widehat{H}^{\mathcal{L}+1} - E_{S}^{\mathcal{L}+1} \right) = \Lambda^{\mathcal{L}/2} \left( \widehat{H}^{\mathcal{L}} - E_{S}^{\mathcal{L}+1} \right) + \Lambda^{\mathcal{L}/2} \underbrace{\sum_{s} \left( \widehat{f}_{s} + \widehat{f}_$$

$$\widetilde{H}^{d+1} = \Lambda^{V_2} \widetilde{H}^{d} + \sum_{s} \widetilde{f}_{\ell} \left( \widehat{f}_{\ell s}^{\dagger} \widehat{f}_{\ell t+s} + h.c. \right) - \delta \widetilde{E}_{s}^{d+1}$$
rescale enlarge system set ground-state energy to zero
(7)

Symbolic notation:

$$= \mathcal{T} \left[ \mathcal{H}^{\mathcal{L}} \right]$$

$$\stackrel{(g)}{\leftarrow} \text{ denotes RG-transformation (7)}$$

Question: what happens under repeated applications of  $\mathcal{T}$ ? Answer: system flows to a fixed point!

Fixed point Hamiltonian satisfies

$$T\left(\tilde{H}^{*}\right) = \tilde{H}^{*} \qquad (9)$$

More precisely: for Wilson chains,  $\int f$  does not have fixed points, but  $\int f^2$  (two RG steps) does:  $T^{2}(\tilde{H}^{*}) = \tilde{H}^{*}$ (10)

in the sense that the eigenspectrum of  $H^{\star}$  and matrix elements of  $f_{\star}$  remain invariant.

й2+1

NRG-II.2

#### NRG-II.3

Key insight by Wilson: fixed points of  $H_{Koulo}$  and  $H_{SIAM}$  can be understood in terms of the fixed points of the free(!)-electron Hamiltonian,

$$\widetilde{H}_{o}^{N} = \sum_{\substack{z=o}}^{l} \sum_{s} \Lambda^{(l-1-l)/2} \widetilde{t}_{e} \left( f_{es}^{\dagger} f_{e+1s} + h.c \right)$$
(1)

The eigenvalues of  $\tilde{H}_{\bullet}^{\mathcal{L}}$  can be found by diagonalizing a  $(\mathcal{R}_{-1})_{*}(\mathcal{R}_{-1})$  -dimensional matrix, with non-zero matrix elements only just above and below the diagonal:

$$\left(\widetilde{H}_{o}^{\mathcal{L}}\right)_{\ell,\ell+1} = \left(\widetilde{H}_{o}^{\mathcal{L}}\right)_{\ell-\ell,\ell} = \Lambda^{(\mathcal{L}-\ell-\ell)/2} \widetilde{t}_{\ell} \qquad (2)$$

Particle-hole symmetry implies that eigenvalues come in degenerate pairs,  $\pm \eta$  . They are given by

For 
$$l + i = \begin{cases} even: & \pm \eta_j &, j = 1, 2, 3, ..., \frac{1}{2} (l + i) \\ odd: & \eta_0 = 0, \pm \eta_j &, j = 1, 2, 3, ..., \frac{1}{2} l \end{cases}$$
 (3)

As  $\measuredangle$  increases, they approach limiting values:

For 
$$l + i = \begin{cases} even: \eta_j & \frac{\text{large } l}{j} & \eta_j^* & j \gg 1 \\ odd: \eta_j & \frac{\text{large } l}{j} & \eta_j^* & j \gg 1 \\ \eta_j^* & \eta_j^* & \eta_j^* & \eta_j^* & \eta_j^* & \eta_j^* \end{cases}$$
 (4)

Not surprising, since  $\tilde{H}_{\omega}^{N}$  is rescaled version of a discretized Hamiltonian with diagonal elements  $\xi_{\pm \ell} \approx \pm \Lambda^{-\ell}$ . Concretely, for  $\Lambda = 2.5$ , the fixed-point values are: [Krishna-murthy1980a]

$$\eta_j^*: 0.746\,856, \, 2.493\,206, \, 6.249\,995, \, (2.5)^3, \, (2.5)^4, \dots, (2.5)^{j-1}, \dots, (N+1) \text{ even };$$
(3.4)

$$\eta_j^{*}$$
: 1.520483, 3.952550, 9.882118, (2.5)<sup>7/2</sup>, (2.5)<sup>9/2</sup>, ..., (2.5)<sup>j-1/2</sup>, ..., (N+1) odd ; (3.5)

Spectrum for 
$$\mathcal{L}+1 = even$$
  
Diagonalized form of  $\widetilde{H}_{o}^{\mathcal{L}}$  is  $\widetilde{H}_{o}^{\mathcal{L}} = \sum_{j=1}^{4} \sum_{s} \gamma_{j} \left( \hat{g}_{js}^{+} \hat{g}_{js}^{+} + \hat{h}_{js}^{+} \hat{h}_{js}^{+} \right)$  (s) single-particle spectrum:  
 $\gamma_{s}^{+} - (z,s)^{\circ}$   
Here  $\hat{g}_{js}^{+}$  describes particle-like excitation: adding particle with energy +  $\gamma_{j}$ .  
and  $\hat{h}_{js}^{+}$  describes hole-like excitation: removing particle with energy -  $\gamma_{j}^{-}$ .  
The many-body spectrum consists of combinations of these excitations:  
 $\hat{\gamma} + \hat{\gamma} + \hat{$ 

The lowest-lying excitations at fixed-point spectrum of 'even fixed point' of  $T^2$ , say  $\tilde{H}_{o, even}^{\star}$ 

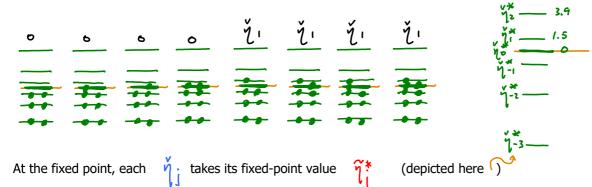
ų х., ž

Spectrum for  $\mathcal{L} + i = odd$ Diagonalized form of  $\tilde{H}_{o}^{\mathcal{L}}$  is  $\tilde{H}_{o}^{\mathcal{L}} = \sum_{s} \check{\gamma}_{o} \hat{g}_{os}^{\dagger} \hat{g}_{os} + \sum_{i=1}^{l} \sum_{s} \check{\gamma}_{i} (\hat{g}_{js}^{\dagger} \hat{g}_{js} + \hat{h}_{js}^{\dagger} \hat{h}_{js})$ 

...

• •

The only (but important) difference to  $\mathcal{L}_{+} \mathcal{L}_{+} = even is the occurrence of a zero-energy level: <math>\check{\chi}_{\mathfrak{b}} = \mathbf{0}$ . All four ways of filling it (empty; spin-up; spin-down; double-occupied) yield the same energy. Hence every many-particle excitation is four-fold degenerate.



The lowest-lying excitations at fixed-point spectrum of 'odd fixed point' of  $T^2$ , say  $\widetilde{H}^*_{o, odd}$ :

(8)

(7)

"," (2.5)"/2

- 9.9

energy 🌙 🛛 🍋 degeneracy

#### 4. Kondo model: fixed points and RG flow

(no magnetic field, h = 0at symmetry point,  $\mathcal{L} = -\mathcal{U}/2$ )

[Wilson1975, Section VIII]

$$\begin{aligned} H_{\text{Kondo}}^{\mathcal{L}} &= \mathcal{J} \quad \hat{\vec{s}}_{d} \cdot \hat{\vec{s}}_{c} \quad + \quad H_{\text{chain}}^{\mathcal{L}} \qquad (1) \quad \bigoplus_{i=p}^{\infty} \stackrel{\circ}{}_{0} \quad i \quad 2 \quad \mathcal{L} \\ \hat{\vec{s}}_{c} &= \sum_{ss'} \sum_{k} \hat{\vec{c}}_{ks}^{\dagger} \frac{1}{2} \vec{\vec{s}}_{ss'} \sum_{k'} \hat{\vec{c}}_{k's'} \quad = \sum_{ss'} \hat{\vec{f}}_{ss}^{\dagger} \frac{1}{2} \vec{\vec{\sigma}}_{ss'} \hat{\vec{f}}_{os} \qquad (2) \quad \left( \text{ since } \sum_{k} \hat{\vec{c}}_{ks}^{\dagger} = \hat{\vec{f}}_{os} \right) \\ \text{Rescaled Hamiltonian:} \quad \tilde{H}_{\text{Kondo}}^{\mathcal{L}} \quad = \quad \Lambda^{(\mathcal{K}-1)/2} \quad \mathcal{J} \quad \hat{\vec{s}}_{d} \cdot \hat{\vec{s}}_{c} \quad + \quad \mathcal{I}_{\underline{s}}^{\mathfrak{D}} \quad \hat{H}_{o}^{\mathcal{L}} \qquad (3) \end{aligned}$$

The Kondo model has two fixed points, corresponding to  $\Im = \circ$  and  $\Im = \sim$ 

(i) Free 'local moment' (LM) fixed point ( $\Im = 0$ )

$$\widetilde{H}_{Kond_{o}}^{\mathcal{L}}(T=0) = \bigoplus_{imp} \underbrace{\bullet}_{0} \underbrace{I}_{2} \underbrace{\mathcal{L}}_{\mathcal{L}} = \underbrace{\mathbb{1}}_{2} \underbrace{\widetilde{H}_{o}^{\mathcal{L}}}_{o} \qquad (u)$$

Has the same spectrum as  $\tilde{H}_{0}^{\sharp}$ , with doubled degeneracy (due to two impurity states  $\uparrow$ ,  $\downarrow$ ) Fixed-point Hamiltonians:  $\tilde{H}_{LM}^{\sharp}, even = \mathbf{1}_{2} \otimes \tilde{H}_{0,even}^{\ast} \qquad \tilde{H}_{LM,odd}^{\sharp} = \mathbf{1}_{2} \otimes \tilde{H}_{0,odd}^{\ast}$ (even: (3.6)×2  $H_{LM}^{\sharp}, even : 0$  (2),  $\eta_{1}^{\ast}$  (8),  $2\eta_{1}^{\ast}$  (12),  $3\eta_{1}^{\ast}$  (7),  $\eta_{2}^{\ast}$  (16) (5)

For 
$$\mathcal{L} + i = \begin{cases} even: (3.6) \times 2 & f_{Lm_1, aven}: 0(2), \eta_1^{*}(8), 2\eta_1^{*}(12), 3\eta_1^{*}(7), \eta_2^{*}(16) \end{cases}$$
 (5)  
odd:  $\int_{a}^{a} (3.8) \times 2, \quad H_{Lm_1, vdd}: 0(8), \eta_1^{*}(32), 2\eta_1^{*}(48), \eta_2^{*}(32), 3\eta_1^{*}(32) \end{cases}$  (6)

[Eqs. from NRG-II.3]

# (ii) Strong-coupling (SC) fixed point ( $\Im = \infty$ )

Fixed-point Hamiltonians:

$$\overset{\circ}{H}_{\text{Koudo}}^{\ell}(T=\infty) = \underbrace{ = \atop_{i=0}^{m} \circ \atop_{i=1}^{m} \circ \underset{i=1}{\overset{\circ}{\underset{i=1}^{m} \circ \atop_{i=1}^{m} \circ \atop_{i=1}^{m} \circ \atop_{i=1}^{m} \circ \atop_{i=1}^{m} \circ \underset{i=1}{\overset{\circ}{\underset{i=1}^{m} \circ \atop_{i=1}^{m} \circ \atop_{i=1}^{m} \circ \atop_{i=1}^{m} \circ \atop_{i=1}^{m} \circ \underset{i=1}{\overset{\circ}{\underset{i=1}^{m} \circ \atop_{i=1}^{m} \circ \atop_{i=1}^{m} \circ \atop_{i=1}^{m} \circ \atop_{i=1}^{m} \circ \underset{i=1}{\overset{\circ}{\underset{i=1}^{m} \circ \atop_{i=1}^{m} \circ \atop_{i=1}^{m} \circ \atop_{i=1}^{m} \circ \atop_{i=1}^{m} \circ \underset{i=1}{\overset{\circ}{\underset{i=1}^{m} \circ \atop_{i=1}^{m} \circ \atop_{i=1}^{m} \circ \atop_{i=1}^{m} \circ \atop_{i=1}^{m} \circ \underset{i=1}{\overset{\circ}{\underset{i=1}^{m} \circ \atop_{i=1}^{m} \circ \atop_{i=1}^{m} \circ \atop_{i=1}^{m} \circ \atop_{i=1}^{m} \circ \underset{i=1}{\overset{\circ}{\underset{i=1}^{m} \circ \atop_{i=1}^{m} \circ \underset{i=1}{\overset{\circ}{\underset{i=1}^{m} \circ \atop_{i=1}^{m} \circ \underset{i=1}{\overset{\circ}{\underset{i=1}^{m} \circ \atop_{i=1}^{m} \circ \atop_{i=1$$

To minimize effect of exchange coupling, all low-energy states have  $\langle \hat{\zeta}_{d}, \hat{\zeta}_{c} \rangle = 0$  (3) i.e. impurity and site 0 form a <u>singlet</u>. Thus  $\langle \hat{f}_{os} \hat{f}_{ls} + \hat{f}_{ls} \hat{f}_{bs} \rangle = 0$ , since hopping to or from site 0 would break the singlet! Hence:

$$\widetilde{H}_{sc, even}^{*} = \widetilde{H}_{o, odd}^{*}, \qquad \widetilde{H}_{sc, odd}^{*} = \widetilde{H}_{o, even}^{*}$$
 (8)

For 
$$\mathcal{L} + \iota = \begin{cases} \text{even:} (3.8) & \widetilde{H}_{sc,even}^{*}: O(4), & \widetilde{\eta}_{1}^{*}(16), & 2 & \widetilde{\eta}_{1}^{*}(24) & \widetilde{\eta}_{2}^{*}(16), & 3 & \widetilde{\eta}_{1}^{*}(16), & (9) \end{cases}$$

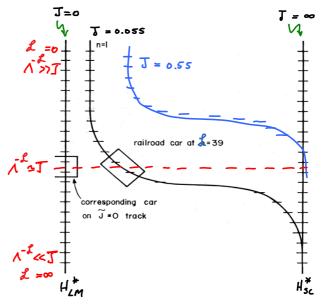
$$\left( \begin{array}{c} \text{odd:} (3.6) \\ \text{[Eqs. from NRG-II.3]} \end{array} \right) \left( \begin{array}{c} 0 \\ 1 \end{array} \right), \eta_{1}^{*}(4) \\ \eta_{1}^{*}(4) \\ \eta_{1}^{*}(4) \\ \eta_{2}^{*}(4) \\ \eta_{2}$$

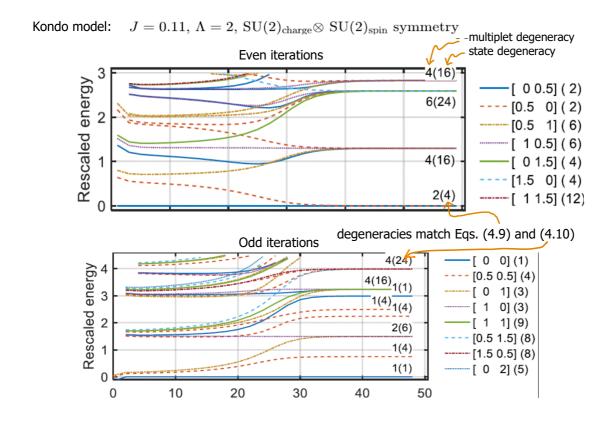
The low-energy spectrum of  $H_{kade}^{\mathcal{L}}(\tau < \tau)$  evolves ('flows') with  $\mathcal{L}$ , flowing from Ũ odd

Wilson's railroad analogy [Wilson1975, p.809]

The basic results of the Kondo calculation can be summarized in a geographical allegory. The sequence of Hamiltonians corresponding to adding successive layers of the onion to the impurity will be represented by a railroad track. The length of track from the beginning to the nth tie represents the Hamiltonian containing n conduction band single electron states (that is, the nth Hamiltonian contains n particle creation and destruction operators). There is a separate railroad track for each different strength of coupling to the impurity. The approximate numerical solution of this sequence of Hamiltonians is represented by a railroad car which travels down the track. Solving the nth Hamiltonian corresponds to having the railroad car at the *n*th tie on the track. The set of energy levels actually computed corresponds to the length of track covered by the railroad car; as the car moves down the track (i.e., as n increases) it covers a smaller and smaller fraction of the total track up to the nth tie.

FIG. 14. Railroad track analogy for the Kondo calculation. Different tracks correspond to different initial values of  $\tilde{J}$ . A track from the top of the figure to the nth tie corresponds to the Kondo Hamiltonian with n electron states kept. The railroad cars illustrate the subset of energy levels actually kept in the numerical calculations.





## 5. SI Anderson model: fixed points and RG flow

[Krishna-murthy1980a, Sec. III]

$$H_{SIAM}^{2} = \sum_{s} \mathcal{E}a \, \hat{d}_{s}^{\dagger} \hat{d}_{s} + U \hat{n}_{d1} \hat{n}_{d1} + \int_{\overline{u}_{r}}^{\overline{u}_{r}} \sum_{s} (\hat{d}_{s}^{\dagger} \hat{f}_{os} + hc.) + H_{ohain}^{2} \qquad (1)$$

 $\tilde{H}_{FO, even}^{*} = 1_{4} \otimes \tilde{H}_{0, even}^{*}$ 

## Free-orbital (FO) fixed point

l = l = c, impurity is decoupled from bath Τf and all four impurity states are degenerate.

Fixed-point Hamiltonians:

Local moment (LM) fixed point

 $\mathcal{L}_{\mathcal{L}} \subset - \cap$  and  $\cap \subset \subset \mathcal{U}$ , If impurity contains single electron behaving as a local moment, with two degenerate spin states.

Fixed-point Hamiltonians:

 $H_{SC, even}^{\star} = H_{0, odd}^{\star}$ (4)

$$\widetilde{H}_{LM,even}^{\star} = \mathbf{1}_{2} \otimes \widetilde{H}_{o,even}^{\star}$$

degeneracy = 2

degeneracy =  $\mu$ 

(no magnetic field,  $\mathcal{L} = \mathbf{o}$ )

Strong-coupling (SC) fixed point

For  $rac{1}{rac{-}{-}}$  **at fixed** И,

site zero couple so strongly to impurity that it decouples from bath, changing its parity.

Fixed-point Hamiltonians:



NRG-II.5

L

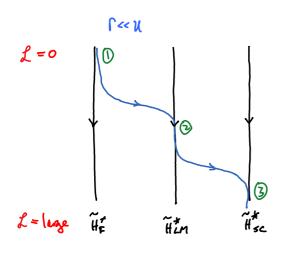
(2)

L

(3)

RG flow for  $\bigcap \angle \angle \bigcup$  (for  $\pounds \downarrow \downarrow$  = even)

[Krishna-murthy1980a]



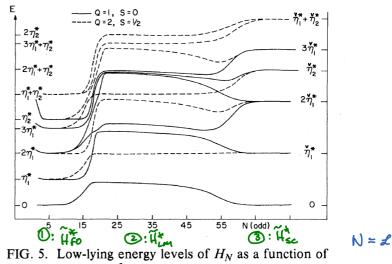
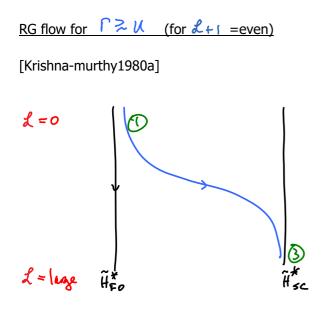


FIG. 5. Low-lying energy levels of  $H_N$  as a function of odd N for  $U/D = 10^{-3}$ ,  $U/\pi\Gamma = 12.66$ , and  $\Lambda = 2.5$ . On the left-hand vertical scale are the lowest-lying free-electron fixed-point levels for N odd, while on the right-hand side are the equivalent levels for N even. The following fixedpoint regimes obtain: free orbital 5 < N < 15, local moment 23 < N < 51, strong coupling 61 < N.

The fact that the level structures of  $\widetilde{H}_{Fo}^{\star}$ ,  $\widetilde{H}_{LM}^{\star}$  and  $\widetilde{H}_{Sc}^{\star}$  show up as regions of near-stationarity, proves numerically that these are fixed points! Crossover from even-type  $\chi_{j}$  levels to odd-type  $\check{\chi}_{j}$  levels proves screening, i.e. singlet-formation between impurity and site 0.



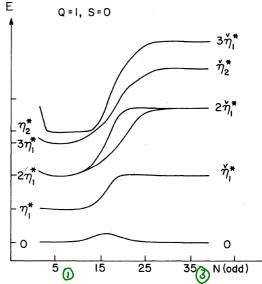


FIG. 6. Low-lying energy levels of  $H_N$  as a function of odd N for  $U/D = 10^{-3}$ ,  $U/\pi\Gamma = 1.013$ , and  $\Lambda = 2.5$ . There is direct transition between the free-orbital and strong-coupling regimes without passing through the local-moment regime.

