MPS-III: Translationally invariant MPS [Schollwbck2011, Sec. 4.2.2] MPS-III.1

Consider translationally invariant MPS, e.g. infinite system, or length-N chain with periodic boundary

conditions. Then all tensors defining the MPS are identical: F] [e] = F] forall £ .

Goal: compute matrix elements and correlation functions for such a system.

1. Transfer matrix

Consider length-N chain with periodic boundary conditions (and A's not necessarily all equal):
indicates trace
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We defined the 'transfer matrix' (with collective indices chosen to reflect arrows on effective vertex)
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Assume all A -tensors are identical, then the same is true for all T—matrices. Hence
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where 'l: . are the eigenvalues of the transfer matrix, and t‘ is the largest one of these.
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where ‘t\‘ are the eigenvalues of the transfer matrix, and )c‘ is the largest one of these.

Assume now that @ -tensor is left-normalized (analogous discussion holds if it is right-normalized).

. . . (MPS-1.1.22)
Then we know that the MPS is normalized to unity: | = LYY ()

. . . £
(MPS-1V.1.8) implies for largest eigenvalue of transfer matrix: (h) =1 = Lk, =, (2)

Hence, all eigenvalues of transfer matrix satisfy \‘t ‘ A < 1|

eigenvector label: j =1 (3)
components of eigenvector

.g x\
Claim: the left eigenvector with eigenvalue 't\"t( = (,say \/-S ; is (\/’)2 = :”... oL (A

Check: do we find \/ Tals = \/b 'Z ‘vector in transfer space' = 'matrix in original space'
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Correlation functions

5,
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Consider local operator: CDW3 = loe N OMC %' (6,_\ (e) {6 )
: . t 6, 6 -4-1?—*
Define corresponding 1T = ¢ ¢ 4
transfer matrix: IO[ A &' Om Se A O (©
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cyclic invariance of trace (#)
Let \/J { S be left eigenvectors, eigenvalues of transfer matrix: \/! T - ":j \/J ()
[ or explicitly, with matrix indices: (V“ >a T = {7.) (\/J ) L ] ()

Transform to eigenbasis of transfer matrix:
L-(L-L)-1 X L-4-
Cop = 2, () [(Toely (1)
JJ
5 assume Syly> =1«

For 3( - & , only contribution of largest eigenvalue, 'L o= 'L( = ( , survives from sum over j':
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Assume 6 = ’('\){- — (& ,and take their separation to be large, L-L'— o (3)
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-
with correlation length £ = [,&\ ( ¢ Zz z)l (m



2. AKLT Model [Affleck1988], [Schollwdck2011, Sec. 4.1.5], [Tu2008] MPS-III.2

(thanks to Hong-Hao Tu for notes!)

General remarks

* AKLT model was proposed by Affleck, Kennedy, Lieb, Tasaki in 1988.

« Previously, Haldane had predicted that S=1 Heisenberg spin chain has finite excitation gap
above a unique ground state, i.e. only 'massive' excitations [Haldane1983a], [Haldane1983b].

» AKLT then constructed the first solvable, isotropic, S=1 spin chain model that exhibits a
'Haldane gap'.

» Ground state of AKLT model is an MPS of lowest non-trivial bond dimension, D=2.

« Correlation functions decay exponentially - the correlation length can be computed analytically.

Haldane phase for S=1 spin chains / "{ .Lj 7 ¥ /!
I Z £
S=i
Consider bilinear-biquadratic (BB) Heisenberg model for 1D chain of spin S=1:
L. - - 7
Hew = ; Sp-Spe v PLS - Spn) )
=
Phase diagram:
pure
integrable point Heisenberg  AKLT integrable point

Y 2 2 ‘(1 g
—— o \}3 1> ~—

dimerized phase ( — , gapless phase
gapped Haldane phase: ﬁ e ("‘/’)

(includes Heisenberg point and AKLT point)

Main idea of AKLT model: Hager = H 8% (F =1 ) ®
is built from projectors mapping spins on neighboring sites to total spin =~ 5§ ;62 = L.
Ground state satsifies  H AKLT ‘ ﬁ 7 = 9 . Toachieve this, ground state is constructed

in such a manner that spins on neighboring sites can only be coupled to Sfoe“ = 0 or |

To this end, the spin-1 on each site is constructed from two auxiliary spin-1/2 degrees of freedom;
One spin-1/2 each from neighboring sites is coupled to spin 0; this projects out the S=2 sector in

the direct-product space of neighboring sites, ensuring that H ALLT annihilates ground state.
traditional depiction: MPS depiction: spin-1/2's live on bonds
d=o =
—A— ,——2«—0‘ S=o $=0° (3)
®% t® " t®@t T

Page 4



Construction of AKLT Hamiltonian

Direct product space of spin 1 with spin 1 contains direct sum of spin 0, 1, 2:

Lol =Aesex, — W

Projector of %, ® ﬂ: onto ﬂs (with S =0 1 2)

(s) (s) 12 2 - =\l :
P:,z. = P,,2 (sl 5, )= ¢ iU (S. t SL) - Sl(slfl) (s
g T1 S'#s
sites 1,2 normalization factor  yields zero when
total spin = g’

: - =\ pet} - = =2 = =
Using (§,+§,> = S 4255, +S, = 2595 4 ¥ , we find for spin-2 projector: ()
b

1(141) ‘7;‘:3
PI(LZ)-—“ C[Z;'S—;+4 —0(0-}-\)“ 25_:;, 1) b
- ¢ (43R £ 255 e o

()
Normalization is fixed by demanding that f()('.,_ must yield [ when acting on spin-2 subspace:

(2)
| = 1

s

C [Z(ZH) -0 ]l 2lz+d) - l(uu)] )

< *_‘S'z)l: 2lesr)
=

i

A
C b-uy = C= 24 (2

(2 Ve | - @, . »
’f)((t = '{,’(S(-SA 7 5S4z = 'Pl'l(ﬁ(/ S,) = projector on spin-2 subspace (”)

AKLT Hamiltonian is sum over spin-2 projectors for all neighboring pairs of spins.

()

_ - - QL‘
Haker = ZZ ﬂ,ﬁu(se/slﬂ )
For a finite chain of Z sites, use periodic boundary conditions, i.e. identify S = g N
Lif L

Each term is a projector, hence has only non-negative eigenvalues. Hence same is true for HA kT -

=y A state satisfying HAKLT [’Lf") = 0(1{,) = ¢  Mmust be a ground state!
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3. AKLT ground state MPS-III.3

S=o S=zo
N —— —— S =o S=0
Z®3z ® ' 1ot L T T
z 2 z z z 3 )

S:l s={ 5::' 5=\ S:’t( S!=|

On every site, represent spin 1 as symmetric combination of two auxiliary spin-1/2 degrees of freedom:
1) = {901

s=l ey = (ey = 4 1oy = {109y« 1u31e7) v

[-1) = LLSULY

On-site projector that maps ﬁ./b(@ % I, to ﬁl
Co= [41yG I « 10)5 (CTICH] « <LKt ) o DKUY o

Use such a projector on every site e : % g, %pu Ry,
{

a[@] - |6i>£ Cﬁdﬂ by £<"(2[2<F!l kf kf (&)
S, s,

3 21
o
with tH i 08 o ,L(o '\ - ) &~ Clebsch-Gordan )
C‘ A‘o ol , C =& i{'o ! i/ Coefficients (s
« :# =1 “Ep for coupling
el - 1

Haldane: 'neighbors shake hands'
Now construct nearest-neighbor 'valence bonds' built from auxiliary spin-1/2 states:

(6

L X L fe « [
Wy = Lo leg) VPERE = R (10, )16 ) '
2 F‘Q . C FARIRY 2 B M ‘ £
\ Itro « ) site 4 site £+1
Haldane: 'each site hand-shakes with its neighbors'
AKLT ground state = (direct product of spin-1 projectors) acting on (direct product of valence bonds):
A Rg-i v xg Be v g, Pt
[ﬁ) = T ¢y TF|V? = c
®¢ (5 ®
£-\ 6y J
o L4\
Why is this a ground state?
Coupling two auxiliary spin-1/2 to total spin 0 (valence bond) oD ‘/@/Z
eliminates the spin-2 sector in direct product space of two spin-1, ,____3__, @
hence spin-2 projector in HAK Lt Yields zero when acting on this. é @ 3 ? £ ® 4
(Will be checked explicitly below.) Y
|
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AKLT ground state is an MPS!

D= T leE, o | e E w B e B
e ¥t P
6p-1 ) e
with 2 C B (o
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Oeope = 6y Bt Kgws _ %t
B e C Ke Pe \% ‘ ; - ‘ ‘
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St t o\ L [ot Lo 1
Explicitly: Q-:-H : B{- = (o o) ,r,__(-( o) = Q(o o vl
~p _ Lo ) ’(__ o | _ L (‘( © ) ()]
bp= © B - J"z((o AP —(o) = T\o |
g I 0 © /{__ O [ - { (0 (] ) \l”
62 < +1 & - ( o | ) J"z_ (-—-( o) - 'FL -( o
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Not normalized: B,BG: ii(:’o)(ol;) +{;(o l)(o (54 z(-lo){oo =% 1
+ ~
Define right-normalized tensors, satisfying ]50. RS = IL : 156-.: s_‘g. 36 )

e - B(50), wea(37), g oFED] w

~

Remark: we could also have grouped B and C in opposite order, defining

~ - 2 -t
grede,  _ ghoe % P fe _ pepgxe, pe o
fr Ky be
6p 5‘
+ -
| This leads to left-normalized tensors, with A-' - g+ . A t - g? | )
B B
S : < <
Exercise: verify that the projector PIL L (s ¢, SH,\ I ¢ I;:
) () L]}
from (MPS-IV.4) yields zero when acting on sites / , Lei of \33 ’P"‘“
* 6’ "‘ ¢’
Hint: use spin-1 representation for (g‘l ) gtﬂ\ oo ce = S ‘e_‘ 3 Eé‘" (20)

Boundary conditions

For periodic boundary conditions, Hamiltonian includes projector L@_@_@_@_@)

connecting sites 1 and N. Then ground state is unique.
For open boundary conditions, there are 'left-over spin-1/2' degrees of \? % )
frandnm at hnath andc Af Fhain (CraninAd ctata ic fAanir-fald Aonanarata U -
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For open boundary conditions, there are 'left-over spin-1/2' degrees of \,; i (@)
freedom at both ends of chain. Ground state is four-fold degenerate. C ¢ C G Q
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4. Transfer operator and string order parameter MPS-II1.4
(arrow directions are opposite to those of section MPS-V.1) 2
! { &
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To compute spin-spin correlator, C,?ec = <c&\$f€] SfC'l \ED , We need )
<4147
"‘ 6_‘ |
T;t = Ber (5%3 s B° , with  S° = ( o_() &
o ()
[ o [t[E(2.) Lot -15G%)] o el
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Exercise

(@) Compute the eigenvalues and eigenvectors of |

22 ~le-elig :
() showthat re T with £ = X )

Remark: since the correlation length is finite, the model is gapped!

Page 9



String order parameter

AKLT ground state: | j Y = | ?“7 Tr [ BG‘
Iy 2 ° Z _z
B = J? T ¥ , B =- K T

ZEETHY
with Pauli matrices A z\o o

° £
Now, note that B R ... & B
—

string of R’

5"',.. B‘N] with G, € {H/ o, -1 % ]
-t z -
, B ="RFT T
- L (o ® _L(to
T -fr,(: <>) T =2 0*!) ()
- D for the Pauli matrices, the operation
= 'raise, do nothing, raise, yields zero ()

Thus, all 'allowed configurations' (having non-zero coefficients) in AKLT ground state have the

property that every t ( is followed by stringof © ,then % 1.

Allowed: !0:;;_) = ... looo -tolovboo-t1 00 —1 (1)
Not allowed: ,03;15 = . l coo | O] or co~lo~-lleo (3
— = = —
'String order parameter' detects this property:
/
" e-1 . ,t
St 2 TSy ¢*
@) , j = S{ ‘(T e (el S[/ (1s)
0e e}l _ e’)
YES XY
T ‘\rgg ‘S t
= sie‘ 1\._, e’ ‘; S; T
4 £
Exercise:
Show that the ground state expectation value of string order parameter is non-zero:
A Sen
((W\ liwl (6 { O{zrj (67 = - %‘ (t.o\
,{-,(‘ 2o L Ao
Hint: first compute | (%]
e

(‘WS%

Examples of configurations with ‘P?' #0

Intuitive explanation why string order parameter is nonzero:

14> = %l@q?
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lj) = Ll Y” (v
7
i s
Son -t T & 1 % R (2
Cl€'3 = % \L" 7| 3 S’éq gm e=Lz Le 3 (e) D)

For the AKLT ground state, there are six types of configurations; four of them give -1, the other two give 0:

’

& ey
Example configuration {3l S i?tl ls) (3[51-]]&') &) ; . S1le) <) 5:2-, CHF%_S(H S[‘,] (3% ()
e ={tr

tloo-1» 1o-01 o +1 =1 @V +)- (=) = =
“looto-tp o~ - =1 + ! (=) (=N - (=) = =t
060D~ 01 DI 0O | £ -1 o YS | - -
~looto-)1pio-11 -1 1 o (=) (+1) - =
2D ~t 10 -10] o 6
lo~Ipi-too o © o

Y s e BV - -

0 7
probability to get 1 or -1 but not 0 at site ¢

]
probability to get 1 or -1 but not 0 at site ¢
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