
Consider translationally invariant MPS, e.g. infinite system, or length-N chain with periodic boundary 

conditions. Then all tensors defining the MPS are identical:                              for all       .

Goal: compute matrix elements and correlation functions for such a system. 

Consider length-N chain with periodic boundary conditions (and A's not necessarily all equal):

Normalization:

indicates trace

indicates trace

regroup

We defined the 'transfer matrix' (with collective indices chosen to reflect arrows on effective vertex)

Then

Assume all      -tensors are identical, then the same is true for all      -matrices. Hence

where               are the eigenvalues of the transfer matrix, and            is the largest one of these. 

[Schollwöck2011, Sec. 4.2.2]

All bonds have same dimension:

Note:

This is assumed throughout below.

MPS-III.1

Transfer matrix1.

MPS-III: Translationally invariant MPS
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where               are the eigenvalues of the transfer matrix, and            is the largest one of these. 

Assume now that        -tensor is left-normalized   (analogous discussion holds if it is right-normalized). 

Then we know that the MPS is normalized to unity:
(MPS-I.1.22) 

(MPS-IV.1.8) implies for largest eigenvalue of transfer matrix: 

Claim: the left eigenvector with eigenvalue                , say              is 

Hence, all eigenvalues of transfer matrix satisfy 

eigenvector label: j = 1
components of eigenvector

Check: do we find 'vector in transfer space' = 'matrix in original space'
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Consider local operator:

Correlator:

Define corresponding

transfer matrix:

cyclic invariance of trace

Transform to eigenbasis of transfer matrix:

  or explicitly, with matrix indices:

Let          ,        be left eigenvectors, eigenvalues of transfer matrix:   

For                 , only contribution of largest eigenvalue,                            , survives from sum over j' :

Assume    , and take their separation to be large, 

If 'long-range order'

If 'exponential decay', 

with correlation length 

assume

Correlation functions
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[Affleck1988], [Schollwöck2011, Sec. 4.1.5], [Tu2008] MPS-III.2

(thanks to Hong-Hao Tu for notes!)

AKLT model was proposed by Affleck, Kennedy, Lieb, Tasaki in 1988. •

Previously, Haldane had predicted that S=1 Heisenberg spin chain has finite excitation gap 

above a unique ground state, i.e. only 'massive' excitations [Haldane1983a], [Haldane1983b]. 

•

AKLT then constructed the first solvable, isotropic, S=1 spin chain model that exhibits a 

'Haldane gap'. 

•

Ground state of AKLT model is an MPS of lowest non-trivial bond dimension, D=2. •

Correlation functions decay exponentially - the correlation length can be computed analytically.•

General remarks

Haldane phase for S=1 spin chains

Consider bilinear-biquadratic (BB) Heisenberg model for 1D chain of spin S=1:

Phase diagram:

gapped Haldane phase:  

(includes Heisenberg point and AKLT point)

dimerized phase

integrable point integrable point
pure 

Heisenberg 

gapless phase

AKLT

is built from projectors mapping spins on neighboring sites to total spin 

Main idea of AKLT model: 

Ground state satsifies                                                   To achieve this, ground state is constructed 

in such a manner that spins on neighboring sites can only be coupled to                              or         .

To this end, the spin-1 on each site is constructed from two auxiliary spin-1/2 degrees of freedom;  

One spin-1/2 each from neighboring sites is coupled to spin 0; this projects out the S=2 sector in 

the direct-product space of neighboring sites, ensuring that                     annihilates ground state.

traditional depiction: MPS depiction: spin-1/2's live on bonds

2. AKLT Model
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Direct product space of spin 1 with spin 1 contains direct sum of spin 0, 1, 2: 

Projector of                         onto                    (with                          )

normalization factorsites 1,2 yields zero when 
total spin = 

Normalization is fixed by demanding that                must yield        when acting on spin-2 subspace:

,  we find for spin-2 projector:

= projector on spin-2 subspace

AKLT Hamiltonian is sum over spin-2 projectors for all neighboring pairs of spins. 

Using

For a finite chain of        sites, use periodic boundary conditions, i.e. identify 

Each term is a projector, hence has only non-negative eigenvalues. Hence same is true for 

A state satisfying must be a ground state!

Construction of AKLT Hamiltonian
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MPS-III.3

On every site, represent spin 1 as symmetric combination of two auxiliary spin-1/2 degrees of freedom: 

On-site projector that maps to           :

Use such a projector on every site        : 

with 

Now construct nearest-neighbor 'valence bonds' built from auxiliary spin-1/2 states: 

AKLT ground state = (direct product of spin-1 projectors) acting on (direct product of valence bonds):

Haldane: 'each site hand-shakes with its neighbors'

Why is this a ground state?

Coupling two auxiliary spin-1/2 to total spin 0  (valence bond)

eliminates the spin-2 sector in direct product space of two spin-1, 

hence spin-2 projector in               yields zero when acting on this.

(Will be checked explicitly below.)

Clebsch-Gordan 
Coefficients
for coupling 

site site 

Haldane: 'neighbors shake hands'

3. AKLT ground state
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with 

AKLT ground state is  an MPS!

Explicitly: 

Not normalized: 

Define right-normalized tensors, satisfying                                 : 

Remark: we could also have grouped B and C in opposite order, defining 

This leads to left-normalized tensors, with 

Exercise: verify that the projector 

from (MPS-IV.4) yields zero when acting on sites                of 

Hint: use spin-1 representation for 

Boundary conditions

For periodic boundary conditions, Hamiltonian includes projector 

connecting sites 1 and N. Then ground state is unique.

For open boundary conditions, there are 'left-over spin-1/2' degrees of 

freedom at both ends of chain. Ground state is four-fold degenerate.
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connecting sites 1 and N. Then ground state is unique.

For open boundary conditions, there are 'left-over spin-1/2' degrees of 

freedom at both ends of chain. Ground state is four-fold degenerate.
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To compute spin-spin correlator, ,  we need

,          with 

Exercise

Compute the eigenvalues and eigenvectors of (a)

Show that (b) , with 

Remark: since the correlation length is finite, the model is gapped!

MPS-III.4

(arrow directions are opposite to those of section MPS-V.1)

is real, hence 

4. Transfer operator and string order parameter
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AKLT ground state: with 

with Pauli matrices 

Now, note that 

string of 

Thus, all 'allowed configurations'  (having non-zero coefficients) in AKLT ground state have the 

property that every           is followed by string of        , then         .

Allowed:

Not allowed: or 

'String order parameter' detects this property:

Exercise: 

Show that the ground state expectation value of string order parameter is non-zero:

Hint: first compute 

Intuitive explanation why string order parameter is nonzero:

for the Pauli matrices, the operation 
'raise, do nothing, raise', yields zero

Examples of configurations with

String order parameter
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For the AKLT ground state, there are six types of configurations; four of them give -1, the other two give 0: 

probability to get 1 or -1 but not 0 at site

probability to get 1 or -1 but not 0 at site

Example configuration
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