TNR: Tensor network renormalization TNR.1
MERA: Multi-scale Entanglement Renorm. Ansatz
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[Vidal2007] (Dec. 1, 2006) Original idea for entanglement renormalization; application to transverse field
quantum Ising model.

[Vidal2008] (Dec. 3, 2006) Detailed proposal for multi-scale entanglement renormalization ansatz (MERA);
shows that contractions in MERA can be computed efficiently, ('?(N )

[Evenbly2009] Evenbly & Vidal: Describe MERA algorithm in detail. Optimization of disentanglers: Sec. IV.

[Aguado2008]/ Aguado & Vidal: Argue that MERA provides natural description for topological states of matter.
[Koenig2009] % Koenig, Reichardt, Vidal: Show Kitaev toric code ground state can be written as a MERA.

[Rizzi2009] Rizzi, Montangero, Vidal: time-dependent MERA (tMERA); optimization via time evolution.
[Cincio2008] Cincio, Dziarmaga, Rams: MERA for 2D system: quantum Ising model.
[Pfeifer2009] Pfeifer, Evenbly, Vidal: MERA for scale-invariant systems.
[Evenbly2009a] Evenbly, Vidal: MERA in 2D: bring down cost from () (’X zg) to 0(7( /é)
[Evenbly2010] Corboz, Evenbly, Verstraete, Vidal: Fermionic MERA
- :[Evenbly2015] Evenbly, Vidal: propose tensor network renormalization (TNR): improve TRG via disentanglers.
—5 [Evenbly2015a] Evenbly, Vidal: show that TNR, applied to ¢ PRI | yields MERA.
—> [Evenbly2017] Describe TNR algorithm in detail. Optimization of via 'projective truncations': Sec. III.C.
[Evenbly2017a] Implicitly disentangled renormalization (IDR): cheaper way to implement disentangling.

[Evenbly2016] Evenbly, White: Entanglement renormalization and wavelets. Construct the first known
analytic MERA for a critical system (critical Ising model).

[Haegeman2018] Haegeman, Swingle, Walter, Cotler, Evenbly, Schulz: Rigorous free-fermion renormalization
from wavelet theory.

[Evenbly2018] Gauge fixing, canonical forms, and optimal trunctations in tensor networks with closed loops.

Page 1



2. Tensor network renormalization (TNR) [Evenbly2015] TNR.2

Goal: improve TRG by fully removing local correlations, including those in local loops.

Strategy: devise truncation scheme involving not only isometries, but also unitary disentanglers.

(@) o, pin, (a) Original lattice for classical spin system on
U:/\f\f’f/ ~On square lattice.
"\#\\ak,'f\\ gﬂ;"*\

.e "*f\ e N . ",
T2 O Oy, (b) Tensor network representation of partition
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function.

(c) Disentangle internal loop correlations along a
plaquette using a combination of disentanglers w®
(to disentangle neighboring sites) and
isometries V', wt (to truncate).

(d) Optimize isometries U v and unitaries
by minimizing the truncation error introduced
by isometries. (For details, see 'projective
truncations' in Section MERA.4 below.)

One TNR iteration step:

(a) Disentangle internal loop correlations along

every other plaquette.

s
(b) Contract plaquettes into 4-leg tensors 3{),
and their links into 4-leg tensors C%7
as defined in (e), (f).

(c) Standard diagonal TRG decomposition.

(d) Standard TRG contraction to yield new
4-leg tensor ,l]‘s*') , as defined in (g).

Remark: the details of this algorithm are
presented in [Evenbly2017, Figs. 5-7].
+A“+” There, the 4-leg tensor C® is not

= constructed explicitly, only implicitly. This is
Q explained in Sec. MERA.4 below.

(8)
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Example: Corner double line (CDL) tensors: how TNR encodes internal loop correlations

CDL model: TRG treatment of CDL model:

Red lines symbolize local correlations. (a) :
Initial A-tensor features 4 red lines. L I
5 m
(@) o ff' = .
j
l#:] = 1 -“ F‘JZ "

(b) o izl

(b)

CDL tensors are fixed point
of TRG, illustrating that
TRG fails to fully encode

A' again features 4 red lines,
hence renormalized tensor

is again of CDL type

local loop correlations.

TNR treatment of CDL model:

@ i j i

kil

B involves only two red lines after all

internal contractions in its definition

have been performed. Ditto for C.

After SVD of B and C and further contractions,

combining two halves each of B and C into A', 9

the A' are not connected by any red lines, )B

hence each A' fully encodes all local correlations! >€\
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Results: TNR for square lattice Ising model with

3
2‘1

spins

at criticality

4
10 17
(a) © TRG (b}
0.9 Te
- X TNR = ¢, ] ) ] A
) e | < 08' B FIG. 3 (color online). Benchmark results for the square lattice
g gl Sfxx 2 07+ % Ising model on a lattice with 2% spins. (a) Relative error in the
n 10 x B k free energy per site 4f at the critical temperature T, comparing
a2 :!:7 06" “ the TRG and TNR over a range of bond dimensions y. The TRG
& & 05 /\#E errors fit 8f o« y~3%2 (the inset displays them using log-log axes),
2 ™ é ' while TNR errors fit §f o exp(—0.305y ). Extrapolation suggests
108 \ &f oc e X 3 04" 1% accuracy that the TRG would require bond dimension y ~ 750 to match the
Z ’(@j g 03~ accuracy of the y =42 TNR result. (b) Spontancous magneti-
£ v g — Exact zation M(T) obtained with TNR withy = 6 [30]. Even very close
g \ & 02-| TNR to the critical temperature, T = 0.9994T _, the magnetization M =
w10 x\‘ 01° x=6 0.48 is reproduced to within 1% accuracy.
0|
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singular values of A(S\- TRG iteration number
(@) T=T¢ scale invariant!
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s 07 . .
E 02 3 Singular value spectrum reaches fixed point
2 1
g 10 1 for TNR, but not for TRG.
Rl S S—
@000 eo§ 102
(b) T=11T,
z 100 =
< - s=10
w 107 " e o . .
E 107 T4 > e TRG Away from criticality, a single singular value
3 = .
g 107 1 R 1 dominates
. TNR ®
w 104 2 ; a -
10% 10" 10%10% 10' 10%210° 10" 107 10° 1w0' 10?
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(c) T
4 -
 T=11T,
- 3 s * S R SRS | SRR . - -
= T=09T, Entanglement entropy is scale invariant
= ‘ E
T i iy A CTAE T
g 2 A at criticality (black dots).
r=091 ., L A%
. | A[l'iV
4 5 6
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3. Projective truncations [Evenbly2017, Sec. III] TNR.3

Truncation for original formulation of MERA [Vidal2007], [Vidal2008] is described in [Evenbly2009, Sec. 1V].

We here discuss truncation strategy for TNR, described in [Evenbly2017, Sec. III]. When using TNR to
generate MERA, this strategy is simpler and more efficient than previous one from [Evenbly2009, Sec. IV].

Local approximation for 4-index tensor )
~n ~on2

General idea: replacement of F by T (differing only locally), is allowed if & = || 7 - T " is small.

Hilbert-Schmidt norm: || ) \\Z = {T¢ (\0. ® ﬂ+> tTr = tensor trace = contract all matching indices @

1
i This is generalization of ‘\W)‘ =ty =Tr[l1r)<¢|] =Tep
(a) b) +F : : ; .7-_ :
T

| FIG. 3. (a) Depiction of (the square of) the Hilbert-Schmidt norm
- of a four-index tensor u. Note that a darker shade is used to represent
- | I the conjugate tensor, which is also drawn with opposite vertical
2: @ MT < = orientation. (b) Given a square lattice tensor network, we wish to
u - replace a 2 x 2 block of tensors F from the network with a different
subnetwork of tensors F. (¢) The square of the difference between
F and F under the Hilbert-Schmidt norm is depicted, where darker
shades are used to depict conjugate tensors, which are drawn with
opposite vertical orientation to regular tensors. The replacement in (b)
is valid if the difference | F — F || is sufficiently small. (d) Assuming
that the local square-lattice network is homogeneous, one can replace
F with F in all 2 x 2 blocks. A coarser square-lattice network is
obtained after contraction between pairs of three-index tensors.

||u||z:tTr(u®u*) '
| =

@ |lF=Af =IFAf - re(F @ F)-1re(F @ )+ || A

(d) H B H
; _ K 9 ; N .
9 $9 If S isobtained from ~ via truncated
T SVD, th ' 2
9—0r o— en = R
— ‘ ! 1 Z»' S; (3
— ¢ sum over discarded singular values
) ) . ) . . . but more complicated choices are
TNR introduces more general class of truncations: 'projective truncations possible and will be used in TNR.4
F i fi top t tt
(a) f j; (b) read diagrams E?)m op to bottom FIG. 4. (a) In a projectiye truncation a subnetwork F is replaced

T e B L Wik $ =| by a new subnetwork F, fvhich consists of a projector P applied
g et = <wt W to the original subnetwofk, i.e., 7 = JF P. (b) Here we assume
\H P + 1 that P is decomposed a9 a product of an isometric tensor w and

= s ; ; ; i
= Ww LU § its conjugate. P = ww'."(c) By definition. isometry w contracts to

F

)

fT: P ‘2 ] v’f identity with its conjugate, wiw = L. (d) The square of the error in
a projective truncation is expanded as a sum of four terms: however
given that P? = P.two of the terms cancel; see also Eq. (18). (e) The
environment I, of isometry w is defined as the network that results
by removing a single instance of w from [|Fw||*: see also Eq. (20).
(f) By construction, the contraction of w and its environment I, is
‘ equal to ||Fwl*. (g) Environment T, is decomposed, via singular

value decomposition (SVD). into a pr: Ei Tic tensors u, v,
H | ’ E

2 and diagonal matrix s. according to the same partitioning
of indices for which w is isometric
2 2
e=/IFI-=IIFPI- =
(e) M Fw
[ ] ' I
L |
update

To minimize error, maximize
Then || ?0”2’: T ( r,‘, @"JB = {E(MS‘U"}U) — {‘(}(}451;"‘1)‘1/1"') = fT.r(S) (3)

Iterate this until convergence of singular value spectrum of C, (typically, hundreds of iterations are needed)
L insert new W = v'u' into (e), recompute f‘,, , do SVD, etc.

[Note: in contrast to Gilt [Hauru2018], local truncation does not 'know' about environment of F itself.
Hence, Gilt truncation is 'smarter' than projective truncation, and needs much fewer iterations.]

(
< 2
€= =

< — —

4

k\—\_/- 1 : t f 1
2 environment or w
L |Fwl? = (T, @ w) p

117 = IFwl”

with constraint wjfwz 1. 'Linearize': hold +/ 1 fixed, optimize W

SVD of environment: F,., = Us ’U’+ ©) 'align basis

(g)
I = . . _ 1" (6) §vectors'
o = Optimal choice for updated w: W~ = T U

Z'see [Evenbly2009, Ea. (67)]  heck: W W = uv+v wWw=1 v
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4. Details of TNR scheme for square lattice.

f
A
A,

YN

[Evenbly2017, Sec. 1V]

TNR.4

FIG. 5. The sequence of coarse-graining steps used in the binary
TNR scheme in order to map an initial square lattice of tensors A,
where every second row of tensors has been conjugated as described
in Appendix D, to a coarser square lattice composed of tensors A'.
(a) A projective truncation is made on all 2 x 2 blocks of tensors; see
Figs. 6(a)-6(c). (b) Conjugate pairs of disentanglers « are contracted
to identity. (c) A projective truncation is made on all B tensors: see
Figs. 6(d)-6(e). (d) A final projective truncation is made: see Figs. 6(f)
and 6(g) for details. (e) Conjugate pairs of isometries w are contracted
to identity.

[A gauge transformation was made on every second row,
equivalent to flipping tensor indices and taking complex
conjugation, to replace 4 by A7.]

Here several different projectors are used, all aiming to disentangle pairs of legs:

(@ F = PFP
& P
N7
At
(d) Y. yu
35 ~ W]
o
PL PR
(f) - n{ x* (g
2=+ =¢
it
(h) Ha Xux., ¥ T X i
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w
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FIG. 6. (a) Details of the projective truncation made at the first
step of the TNR iteration; here two copies of a projector P,. which
is composed of a product isometric and unitary tensors, are applied
to a 2 x 2 block of A tensors. (b) Definition of four-index tensor B.
(c) Projector P, is formed from isometries v, ., vg and disentangler u
(and their conjugates). (d) Details of the projective truncation made
at the second step of the TNR iteration. (e) Definition of matrix D.
(f) Details of the projective truncation made at the third step of the
TNR iteration. (g) Definition of new four-index tensor A’, copies
of which comprise the coarse-grained square-lattice tensor network.
(h) Delineation of the different dimensions { ., xy. xw, Xy} of indices
on tensors {u,v; Vg, yr, Vg, w}.

(a-c): Projector P is used twice. It is built from a
unitary, W , and two isometries, 1 , Ve

(d-e) Two projectors are used, built from two
isometries, JL , YR

(f-g) One projector is used twice, built from
the isometry 2

Each of these objects has a corresponding environment:

FIG. 7. The linearized environments of tensors {vg.vg.
u,yp,yg,w} involved in an iteration of the binary TNR scheme.
(a)—(c) Environments Ty, , I',,. and T", of the isometries vz, vg and
disentangler u involved in the first projective truncation of the TNR
iteration, as detailed in Fig. 6(a). (d) and (¢) Environments I"y, and
'y, of isometries y, and yg from the second projective truncation
of the TNR iteration, as detailed in Fig. 6(d). (f) Environment '), of
isometry w from the third projective truncation of the TNR iteration,
as detailed in Fig. 6(f).

U,V g, Yo, Yr, W must be iteratively
optimized one after the other, hundreds of times,
until convergence is achieved.



5. TNR results in MERA [Evenbly2015a] TNR.5

Original formulation of MERA: [Vidal2007], [Vidal2008]; truncation used there: [Evenbly2009, Sec. 1V].

We here discuss alternative scheme for obtaining MERA via TNR, proposed in [Evenbly2015a], with
truncation strategy described in [Evenbly2017, Sec. III]. This strategy is simpler and more efficient than
previous one from [Evenbly2009, Sec. IV].

Express imaginary time evolution of 1D quantum chain as tensor network:
[Evenbly2015a, Fig. C2] = [Evenbly2017, Fig. 2]

) = e "nghVo>

(a) Trotterize imaginary time evolution.

(b) SVD all Trotter gates, horizontally in
one layer, vertically in the next.

(c) Contract four half-isometries
to obtain effective square lattice
with 4-leg tensor A.

=)

{ I I i Ilﬂvi { | [Evenbly2017, end of Sec. II, and Fig. 17]

FL LT LMD -eme——9 | |
“§—9—0—0="a) S9SN ) Goal of this step: to make 'bonds' in

LIS T TS coal o e sep: fo ek
Al ]—|—|_ {[ME}J '@MI]‘ ol b gk orizontal/vertical directions become
-O0—O0—0—0- O Lo WO 1 ‘ I ‘ comparable in strength. To 'measure

[T 1 1 [ ,

bond strength’, compute spectra of
® 4 wwha (d) transfer matrices

F | i

T FE b @

@E _ E Their decay should match as closely
as possible.
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Apply one TNR step (see MERA.3); this yields boundary layer of MERA: [Evenbly2015a, Fig. C3]

(a)

open boundary

b (b)
>
—_—

Iteratively apply RNT; each step yields new laver of MERA:

(a)

(b)

[Evenbly2015a, Fig. 1]

FIG. I (color online). (a) Tensor network, the ground state |‘II)
of H on an infinite lattice. It is made of copies of tensor A and
restricted to the upper half plane (x.z"), with a row of open
indices at 7 = 0. (b) By coarse graining the tensor network while

leaving the open indices untouched, we obtain a new tensor
network with tensors A’ together with one row of disentanglers
and isometries. (¢) Further coarse graining of the tensor network
produces new coarse-grained tensors A” and a second layer of
disentanglers and isometries. (d) By iteration we obtain a full
MERA approximation for state | ).

Similar constructions are possible for thermal Boltzmann factor, [Evenbly2015a, Fig. 2]

(a)

open boundary

Page 8

FIG. 2 (color online).  (a) Tensor network on an infinite strip of
finite width f. with two rows of open indices. It is proportional to
the thermal state, ¢##/Z. (b) By coarse graining the tensor
network while leaving the open indices untouched, we obtain a
new tensor network with tensors A’ together with an upper and
lower row of disentanglers and isometries. (c) Further coarse
graining produces a thermal MERA.



and for ground state of a periodic strip of finite length L: [Evenbly2015a, Fig. 3]

L

(a) |

c
4
C
4
(
(.

open boundary
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FIG. 3 (color online). (a) Tensor network on a semi-infinite
vertical cylinder of finite width L and with a row of open indices,
proportional to the ground state of H on a periodic chain made of
L sites. (b) Result of coarse graining the initial tensor network
while not touching its open indices. (¢) MERA connected to a
semi-infinite vertical cylinder of O(1) width. Inset: Transfer
matrix 7" of this cylinder. The eigenvectors of 7 with the largest
eigenvalues correspond to the low energy eigenstates of H.
(d) MERA for the ground state or low energy excited states of H,
where the top tensor is an eigenvector of the transfer matrix 7.



6. TNR benchmark results: 2D classical Ising model

[Evenbly2017, Sec. 1V] TNR.6
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FIG. 11. (a) Comparison between TRG and TNR of the truncation
error &, as defined in Eq. (11), as a function of RG step s in the 2D
classical Ising model at critical temperature 7.. While increasing
the bond dimension y gives smaller truncation errors. the truncation
errors still grow quickly as a function of RG step s under TRG.
Conversely, truncation errors remain stable under coarse-graining

with TNR. (b) Relative error in the free energy per site §f at the

critical temperature 7,.. comparing TRG and TNR over a range of bond
dimensions x. The error from TRG is seen to diminish polynomially
with bond dimension, with fit §f o x %% (where the inset displays
the same TRG data with logarithmic scales on both axes). while the
error from TNR diminishes exponentially with bond dimension, with

fit§f o exp(—0.305 ). Extrapolation suggests that TRG would need
bond dimension x =2 750 to match the accuracy of the x = 42 TNR
result.

FIG. 12. (a)Spontaneous magnetization M(T') of the 2D classical
Ising model near critical temperature 7. both exact and obtained with
TNR with y = 6. Even very close to the critical temperature, T =
0.9994 T,, the magnetization M = (.48 is reproduced to within 1%
af

77 both exact and obtained

accuracy. (b) Specific heat, o(T) = —T
using TNR with y = 6.

FIG. 13. The precision with which TNR approximates a scale-
invariant fixed-point tensor for the 2D classical Ising model at critical
temperature 7, is examined by comparing the difference between ten-
sors produced by successive TNR iterations 5§ = [|A®) — AU=1
where tensors have been normalized such that |[A“| = 1. The
precision with which scale invariance is approximated in the initial
RG steps (small s) is limited by the presence of RG-irrelevant terms
in the lattice Hamiltonian that break scale invariance at short-distance
scales, while numerical truncation errors. which can be thought of as
introducing RG-relevant terms, shift the system from criticality (and
thus scale invariance) in the limit of many RG steps s.

FIG. 15. (a) Relative error in the energy of scale-invariant
MERAs optimized for the ground state of the 1D quantum Ising
model at criticality in terms of bond dimension x. comparing
MERAs optimized using TNR to those optimized using variational

energy minimization. Energy minimization produces MERAs with

a more accurate approximation to the ground state energy, but is
significantly more computationally expensive [with a computational

cost that scales as O(Xg) versus as O(XG) for TNR]. (b) Low-energy
eigenvalues of the 1 D quantum Ising model at criticality as a function

of 1/L, computed with y = [2 TNR. Discontinuous lines correspond
to the finite-size CFT prediction. which ignores corrections of
order L2,



