Symmetries II: Non-Abelian

1. Motivation, review of SU(2) basics

 $(\mathbf{Q} + \mathbf{Q}' = \mathbf{Q}'')$ led to block-diagonal Hamiltonian. Reminder: for Abelian symmetries, sum rule For non-Abelian symmetries, e.g. SU(2), there are more possibilities: Coupling two spin 1/2: $\frac{1}{2}$ (8) $\frac{1}{2}$ = \circ (+) (1) $\mathbb{V}^{\frac{1}{2}} \otimes \mathbb{V}^{\frac{1}{2}} = \mathbb{V}^{\circ} \otimes \mathbb{V}^{1}$ Hilbert spaces: (2) 2 - 2 = 1 + 3 Dimensions: (3) If Hamiltonian coupling the two spins is SU(2) invariant, will be block-diagonal in basis of total spin: $H = \begin{pmatrix} \ddots & \ddots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \end{pmatrix} \longrightarrow \begin{pmatrix} \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \end{pmatrix}$ (4) direct sum basis direct product basis $\mathbb{V}^{S} \otimes \mathbb{V}^{S'} = \mathbb{V}^{\lfloor g - S' \rfloor} \oplus \mathbb{V}^{\lfloor s - S' + 1 \rfloor} \oplus \mathbb{V}^{S + S'}$ General: (5) decomposition into direct sum direct product

Such direct products occur everywhere in tensor networks:

1/2 1 1/2 1/2 1/2 1/2 1/2

Hamiltonian will be block-diagonal in basis of total spin.

Goal: learn how to systematically construct such a basis in MPS language. More generally: learn how exploit symmetries for tensor networks, when each leg of each tensor refers to symmetry multiplets, not individual states.

Reminder: SU(2) basics

SU(2) generators:	[ŝa ŝb] = izabc Ŝc	$\hat{s}^{\pm} = \hat{s}^{\star} \pm i\hat{s}^{\dagger}$	8 (6)
a, b, c & {x, y, z}			

$$[\hat{s}^{\pm}, \hat{s}^{\pm}] = \pm \hat{s}^{\pm}, \quad [\hat{s}^{\pm}, \hat{s}^{-}] = z \hat{s}_{2}$$
 (P)

$$\hat{\vec{S}}^{2} = (\hat{S}^{*})^{2} + (\hat{S}^{2})^{2} + (\hat{S}^{*})^{2}$$
(8)

Irreducible multiplet:

(irrep)

Casimir operator:

$$\tilde{S}_{z}, \tilde{S}^{z} = 0 \tag{9}$$

 $\hat{S}^{2}[S,s] = S(S+1)[S,s], S = 0, \frac{1}{2}, \dots$ (13) $\hat{S}_{2}[S,s] = S[S,s], S = -S - S + 1, \dots$ (11)

$$d_{c} = ZS + i$$
(1)
$$d_{c} = ZS + i$$
(12)

Dimension of multiplet:

Dimension of multiplet. $a_{s} = 2 \omega + i$	((()
Highest weight state: $\hat{S}^{+} S, S \rangle = 0$ (13) Lowest weight state: $\hat{S}^{-} S, -S \rangle = 0$ (14) $S^{+} -S$	5
Consider Heisenberg spin chain: $\hat{H} = \Im \sum_{\ell} \vec{s}_{\ell} \cdot \vec{s}_{\ell+1}$ has SU(2) symmetry.	(15)
Define $\hat{\vec{S}}_{fot} = \sum_{\ell} \vec{\vec{S}}_{\ell}$, then $\hat{\vec{S}}_{tot}^{\ell}$, $\hat{\vec{S}}_{tot}^{\ell}$, are SU(2) generators,	(16)
and $\left[\hat{N},\hat{S}_{tef}^{2}\right] = 0$, $\left[\hat{N},\hat{S}_{tef}^{2}\right] = 0$.	(13)
Symmetry eigenstates can be labeled 'spin label' or 'symmetry label' or 'spin projection label' or 'internal label' (lower case s), 'irrep label' (upper case S) 'multiplet label' distinguishes states within multiplet 'multiplet label' distinguishes different multiplets having same spin s	(18)
with $S_{iot}^{2} S_{ij}s\rangle = s S_{ij}s\rangle$	(19)
$\hat{S}_{ME}^{2} S,i;s\rangle = S(S_{+1}) S,i;s\rangle$	(20)
$\langle S', i'; s' \hat{H} S, i; s \rangle = 1^{s'} \cdot 1^{s'} \cdot [H_{s'}]^{i'}$	(ย) ck .รี

 \sim reduced matrix elements in block \mathcal{S}' and diagonalize it.

For each \int , we just have to find the reduced Hamiltonian $\left[H_{S}\right]_{i}^{i'}$

Goal: find systematic way of dealing with multiplet structure in a consistent manner.

Sym-II.2

S⁴

(8d)

Irreducible representation (irrep) of symmetry group forms a vector space:

Decomposition of tensor product of two irreps into direct sum of irreps:

$$V^{\mathcal{S}} \otimes V^{\mathcal{S}'} = \sum_{\substack{\emptyset \in \mathcal{S}'' = \\ \emptyset \in \mathcal{S}''}}^{\mathcal{S}+\mathcal{S}'} V^{\mathcal{S}''} = \sum_{\substack{\emptyset \in \mathcal{S}'' \\ \emptyset \in \mathcal{S}''}} N^{\mathcal{S}\mathcal{S}''} V^{\mathcal{S}''} \qquad \uparrow \mathcal{S}'$$
(2)

4

3. Tensor operators

Consider an SU(2) rotation, $g \in SU(2)$

A spin multiplet forms an 'irreducible representation' (irrep), i.e. it transforms under this rotation as:

$$\hat{\mathcal{U}}(q) | S, s \rangle = | S, s' \rangle \mathcal{D}(q)^{s'} representation matrix for spin-S irrep, of dimension
$$(2S'+i) \times (2S'+i)$$

$$\langle S, s | \hat{\mathcal{U}}^{\dagger}(q) = \mathcal{D}^{\dagger}(q)^{s} s' \langle S, s' |$$

$$(o)$$

$$(o)$$

$$(o)$$

$$(o)$$

$$(o)$$$$

An 'irreducible tensor operator' transforms analogously (to bra):

 $\hat{\mathcal{U}}(g) \quad \hat{\mathcal{O}}^{(S,S)} \hat{\mathcal{U}}^{\dagger}(g) = \mathcal{D}^{\dagger}(g)^{S}{}_{S'} \hat{\mathcal{O}}^{(S,S')} \qquad (1)$

Example 1: Heisenberg Hamiltonian is SU(2) invariant, hence transforms in $\hat{S} = \mathbf{o}$ representation of SU(2): (scalar) Example 2: SU(2) generators, \hat{S}^{\dagger} , \hat{S}^{-} , \hat{S}^{\dagger} transform in $\hat{S} = i$ (vector) representation of SU(2): $\hat{S}(s^{-}(s)) = (\frac{1}{32}\hat{S}^{+}, \hat{S}^{\pm}, \frac{1}{32}\hat{S}^{-})^{T}$, $\hat{U}(g) \hat{S}^{(1,s)}U^{\dagger}(g) = \hat{D}^{\dagger}(g)^{s}S^{(1,s)}$ (3)

Wigner-Eckardt theorem

Every matrix element of a tensor operator factorizes as 'reduced matrix elements' times 'CGC':

In particular, for Hamiltonian, which is a scalar operator: $(S \approx 0, s \approx 0)$

$$\langle S, i; s \mid \hat{H} \mid S'', i''; s'' \rangle = \underbrace{\left(H^{S, O} S'' \right)^{i} :''}_{=: \left[H_{O} \right]^{i} :''} \langle S, s; O, O \mid S'', s'' \rangle \qquad (5)$$

We will see: a factorization similar to (4) also holds for A -tensors of an MPS!

$$A^{(S,i_{j}s),(S',i'_{j}s')} = (\tilde{A}^{S,S'}_{S''})^{i}_{i''} (C^{S,S'}_{S''})^{s,s'}_{s''} (6)$$

$$\frac{S,i_{j}s}{S,i_{j}s'} = \frac{S,i_{j}\tilde{A}^{S''}_{S''}}{s}$$

Page 4

$$\mathbb{V}^{\gamma_2} \otimes \mathbb{V}^{\gamma_2} = \mathbb{V}^{\circ} \oplus \mathbb{V}^{\prime} \qquad \circ \xrightarrow{\gamma_2}_{\gamma_2} \circ \oplus \mathbb{I}$$

Local state space for spin $\frac{1}{2}$: $|\uparrow\rangle = |\frac{1}{2}, \frac{1}{2}\rangle$. $|\downarrow\rangle = |\frac{1}{2}, -\frac{1}{2}\rangle$. (1)

Singlet:
$$|S, s\rangle = |o, o\rangle = \frac{1}{2}(|\uparrow \downarrow\rangle - |\downarrow \uparrow\rangle)$$
 (2)

$$= \frac{1}{22} \left(\frac{1}{2}, \frac{1}{2}; \frac{1}{2}, -\frac{1}{2} - \frac{1}{2}, -\frac{1}{2}, \frac{1}{2} \right) (3)$$

Trip

plet:
$$(|1,1\rangle = |\uparrow\uparrow\rangle$$
 (4)

$$|S,s\rangle = \left\{ |1,0\rangle = \frac{1}{2} \left(|1\rangle + |1\rangle \right)$$
 (5)

$$| | , -1 \rangle = | \downarrow \downarrow \rangle \rangle \tag{6}$$

Transformation matrix for decomposing the direct product representation into direct sum: S'' = o

Transforming operators from direct product to direct sum basis (self-study: check details!) $S = \frac{1}{2}$ repr. of SU(2) generators: $S_{1}^{+} = \begin{pmatrix} \circ & 1 \\ \circ & \circ \end{pmatrix}, \quad S_{1}^{-} = \begin{pmatrix} \circ & \circ \\ \circ & \circ \end{pmatrix}, \quad S_{1}^{+} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{pmatrix}$ (7)

In direct product basis, the generators have the form

$$S^{t} = S_{1}^{t} \otimes \mathbf{I}_{\Sigma} + \mathbf{I}_{0}^{t} \otimes S_{\Sigma}^{t} = \begin{pmatrix} \circ & |\cdot(|_{1})| \\ \circ & \circ \end{pmatrix} + \begin{pmatrix} |\cdot(\circ)| & \circ \\ \circ & |\cdot(\circ)| \\ \circ & |$$

Sym-II.4

Transformed into new basis, all operators are block-diagonal:

$$\hat{\varsigma}^{+} = C_{j_{2}j_{3}}^{+} C_{(2)} = \begin{pmatrix} \circ & t_{2} & t_{2} & \circ \\ l & \circ & \circ & \circ \\ \circ & f_{2} & -f_{2} & \circ \\ \circ & f_{2} & -f_{2} & \circ \\ \circ & \circ & \circ & i \end{pmatrix} \begin{pmatrix} \circ & l & l & \circ & \circ \\ \circ & \circ & \circ & i \\ \circ & \circ & \circ & i \end{pmatrix} \begin{pmatrix} \circ & l & l & \circ & \circ \\ \circ & \circ & \circ & i \\ \circ & \circ & \circ & i \end{pmatrix} = \begin{pmatrix} \circ & \circ & \circ & \circ \\ \circ & \circ & \circ & f_{2} & \circ \\ \circ & \circ & \circ & f_{2} & \circ \\ \circ & \circ & \circ & i \end{pmatrix}$$
(a)

These 4x4 matrices indeed satisfy $\int \widetilde{S}^{*}, \ \widetilde{S}^{+} = \pm \widetilde{S}^{+}, \ \widetilde{S}^{-} = \pm \widetilde{S}^{*}$ (14) So, they form a representation of the SU(2) operator algebra on the <u>reducible</u> space $\bigvee^{\circ} \bigcup^{\prime} \bigvee^{\circ}$ Futhermore, we identify: on \mathbb{V}° : $S^{+} = S^{-} = S^{+} = 0$

on
$$V'$$
: $S^{\dagger} = \int Z' \begin{pmatrix} 0 & 0 \\ 0 &$

(15)

Now consider the coupling between sites 1 and 2, $\vec{S}_{l} \cdot \vec{S}_{2}$. How does it look in the new basis?

$$S_{1}^{2} \otimes S_{2}^{2} = \frac{1}{4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \implies S_{1}^{2} \otimes S_{2}^{2} = C_{12}^{4} (S_{1}^{2} \otimes S_{2}^{2}) C_{12} = \frac{1}{4} \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(13)

$$\frac{1}{2}S_{1}^{\dagger}\otimes \overline{S_{2}} = \frac{1}{2}\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \implies \frac{1}{2}S_{1}^{\dagger}\otimes \overline{S_{2}} = C_{1}^{\dagger}\begin{pmatrix} 1 & 0 & \overline{S_{2}} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} (18)$$

These matrices are not block-diagonal, since the operators represented by them break SU(2) symmetry. But their sum, yielding $\vec{S}_{\iota} \cdot \vec{S}_{z}$, is block-diagonal: $C_{[2]}^{\dagger}\left(\overline{S}, \otimes \overline{S}_{2}\right)C_{[2]} = C_{[2]}^{\dagger}\left(S_{1}^{2}\otimes S_{2}^{2} + \frac{1}{2}\left(S_{1}^{+}\otimes S_{2}^{-} + S_{1}^{-}\otimes S_{2}^{+}\right)\right)C_{[2]} = \frac{1}{4}\begin{bmatrix} -\frac{3}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ (20)

The diagonal entries are consistent with the identity

$$\overline{S}_{1} \cdot \overline{S}_{2} = \frac{1}{2} \left[\left(\overline{S}_{1} + \overline{S}_{2} \right)^{2} - \overline{S}_{1}^{2} - \overline{S}_{2}^{2} \right) = \begin{cases} \frac{1}{2} \left(0 \cdot 1 - \frac{1}{2} \cdot \frac{3}{2} - \frac{5}{2} \cdot \frac{3}{2} \right) = -\frac{3}{4} & \text{for } S^{4} = 0 \\ \frac{1}{2} \left(1 \cdot 2 - \frac{1}{2} \cdot \frac{3}{2} - \frac{5}{2} \cdot \frac{3}{2} \right) = \frac{3}{4} & \text{for } S^{4} = 0 \end{cases}$$

$$(z_{1})$$

In section Sym-II.6 we will need $(\vec{s}_2 \cdot \vec{s}_3)$. In preparation for that, we here compute

//

$$\mathbf{1}_{\mathbf{0}} \otimes \mathbf{S}_{\mathbf{z}}^{\mathbf{z}} = \frac{1}{\mathbf{z}} \begin{pmatrix} \mathbf{1}_{\mathbf{1}_{\mathbf{0}}} \\ \mathbf{1}_{\mathbf{0}} \\ \mathbf{1}_{\mathbf{0}} \otimes \mathbf{S}_{\mathbf{z}} \end{pmatrix} \Longrightarrow \mathbf{1}_{\mathbf{0}} \otimes \mathbf{S}_{\mathbf{z}}^{\mathbf{z}} = \mathbf{C}_{\mathbf{0}}^{\dagger} (\mathbf{1}_{\mathbf{0}} \otimes \mathbf{S}_{\mathbf{z}}^{\mathbf{z}}) \mathbf{C}_{\mathbf{0}} = \frac{1}{\mathbf{z}} \begin{bmatrix} \mathbf{0}_{\mathbf{0}} & \mathbf{0}_{\mathbf{0}} \\ \mathbf{0}_{\mathbf{0}} & \mathbf{0}_{\mathbf{0}} \\ \mathbf{0}_{\mathbf{0}} & \mathbf{0}_{\mathbf{0}} \\ \mathbf{0}_{\mathbf{0}} & \mathbf{0}_{\mathbf{0}} \end{bmatrix}$$
(22)

5. Example: direct product of three spin-1/2 sites

$\left(\bigvee^{\circ} \oplus \bigvee^{1} \right) \otimes \bigvee^{V_{2}} = \bigvee^{V_{2}} \oplus \bigvee^{V_$

Basis transformation (Clebsch-Gordan coefficients):

		first do		i = 1 first doublet second doublet		quartet			
(SS' \ SS'		14272)	(h,-12)	142,427	142,-42)	(3/2,3/2)	(\$1, "z)	(72,-42)	137,-3/2)
$ \begin{pmatrix} \begin{pmatrix} S,S' \\ [3],S'' \end{pmatrix} & S'' \\ = \langle S,S;S',S',S' S''_{I}S'' \\ \langle \text{direct product } \text{ direct sum} \rangle $	<0,0; 42, 421	(1	٥						
	60;42,-42	0	(
	<1,1, 42,421			0	ø		D	0	0
	<1,1; 1/2,-421			2/3	0	0	尔	0	•
	<1,0; 42,921			- <i>Ys</i> s	0	0	<i>¥</i> 3 0	0	0
	< 1,0; 42,-42l			0	炻	0	Ö		0
	< 4-1; 42, 1/21			Ø	-133	0	0	异石	σ
	× ۱٫۱; ۲2,- ۲21			0	0	Ø	0	0	<u> </u>
									(5)

Let us find
$$H_{12} + H_{23} = \overline{S}_1 \cdot \overline{S}_2 \cdot 1_3 + 1_1 \cdot \overline{S}_2 \cdot \overline{S}_3$$
 in this basis. (6)
Combining (Sym-II.4, (17-19)) 1, with (Sym-II.4, (22-24)) \overline{S}_2 , we readily obtain

$$\vec{S}_{1} \cdot \vec{S}_{2} \cdot \vec{1}_{8} + \vec{1}_{1} \cdot \vec{S}_{2} \cdot \vec{S}_{3} = C_{(83)}^{+} \left(\vec{S}_{1} \cdot \vec{S}_{2} \cdot \vec{1}_{3} + \vec{1}_{1} \cdot \vec{S}_{2} \cdot \vec{S}_{3} \right) C_{[83]}$$
(6)

$$S = \frac{1}{2} \qquad S = \frac{3}{2} \qquad S = \frac{3}{2} \qquad (10)$$

$$S = \frac{1}{2} \qquad S = \frac{3}{2} \qquad (10)$$

$$S = \frac{1}{2} \qquad S = \frac{3}{2} \qquad (10)$$

$$S = \frac{1}{2} \qquad S = \frac{3}{2} \qquad (10)$$

$$S = \frac{1}{2} \qquad S = \frac{3}{2} \qquad (10)$$

$$S = \frac{1}{2} \qquad S = \frac{3}{2} \qquad (10)$$

$$S = \frac{1}{2} \qquad S = \frac{3}{2} \qquad (10)$$

$$S = \frac{1}{2} \qquad S = \frac{3}{2} \qquad (10)$$

$$S = \frac{1}{2} \qquad S = \frac{3}{2} \qquad (10)$$

$$S = \frac{1}{2} \qquad S = \frac{3}{2} \qquad (10)$$

$$S = \frac{1}{2} \qquad S = \frac{3}{2} \qquad (10)$$

$$S = \frac{1}{2} \qquad S = \frac{3}{2} \qquad S = \frac{3}{2} \qquad (10)$$

$$S = \frac{1}{2} \qquad S = \frac{3}{2} \qquad S = \frac{3}{2} \qquad (10)$$

$$S = \frac{1}{2} \qquad S = \frac{3}{2} \qquad S = \frac{3}{2} \qquad (10)$$

$$S = \frac{1}{2} \qquad S = \frac{3}{2} \qquad S =$$

Page 8

 $C_{(3)}^{\dagger}$

Sym-II.5

Beautifully blocked and diagonal in symmetry labels, in agreement with Wigner-Eckardt theorem, cf. Sym-II.3 (5'):

with reduced matrix elements

 $\langle S, i; s | \hat{H} | S', i''; s'' \rangle$

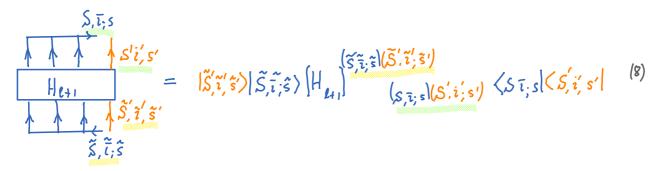
$$H_{[1/2]} = \begin{pmatrix} -3/4 & \sqrt{3}/4 \\ \sqrt{3}/4 & -\sqrt{4} \end{pmatrix}, \quad H_{[3/2]} = \frac{1}{2} \quad (14)$$

Why does A-matrix factorize? Consider generic step during iterative diagonalization:

Suppose Hamiltonian for sites \mid to ℓ has been diagonalized:

$$H_{e} = H_{e} = E_{ISI}^{\overline{i}} \mathbf{1}_{S}^{S'} \mathbf{1}_{\overline{i}}^{T'} \qquad (7)$$

Add new site, with Hamiltonian for sites l to $l \neq l$ expressed in direct product basis of previous eigenbasis and physical basis of new site:

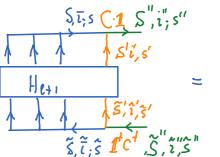


Transform to symmetry eigenbasis, i.e. make unitary tranformation into direct sum basis, using CGCs: sums over all repeated indices implied:

composite index:
$$\tilde{i}^{t} \leftarrow (\tilde{i}, \tilde{i}^{t})$$

 $\tilde{j}^{r}_{i} \tilde{i}^{s}_{i} \tilde{s}^{s}_{i} \tilde{s}^{s$

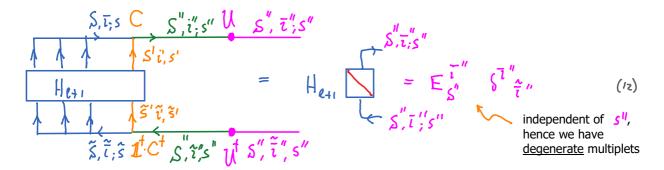
Diagrammatic depiction is more transparent / less cluttered:



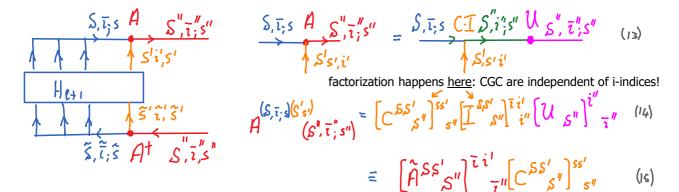
$$|S,\tilde{z},s''\rangle \left[H_{S''}\right]^{\tilde{z}''} |S,\tilde{z},s''\rangle$$
(11)

symmetry ensures that this is diagonal in spin indices!

Now diagonalize and make unitary transformation into energy eigenbasis:



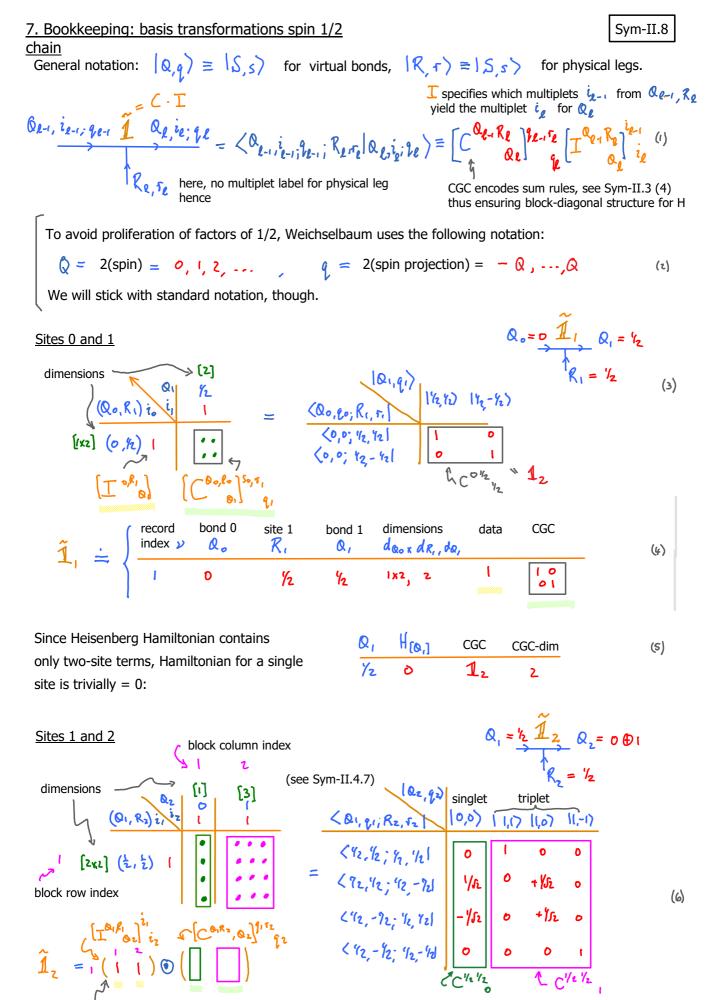
Combined transformation from old energy eigenbasis to new energy eigenbasis:



A-matrix factorizes, into product of reduced A-matrix and CGC !! $A = \tilde{A} \cdot C$

(16)

$$S,\overline{i}; S, A, S, \overline{i}'; S'' = \frac{S,\overline{i}, \widetilde{A}, S''; i''}{S, \overline{i}; S'} = \frac{S,\overline{i}, \widetilde{A}, S''; i''}{S, \overline{i}; S'}$$



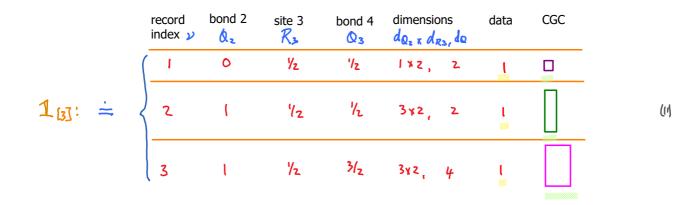
For first matrix, rows are labeled by (Q_{1}, i_{1}, K_{2}) , columns by (Q_{2}, i_{2}) . Each of its elements must be multiplied by the CG block labeled Q_{1}, K_{2}, Q_{2} . To indicate this graphically, arrange these blocks in second matrix, carrying <u>same</u> indices as the

For first matrix, rows are labeled by (Q_1, i_1, K_2) , columns by (Q_2, i_2) . Each of its elements must be multiplied by the CG block labeled Q_1, K_2, Q_2 . To indicate this graphically, arrange these blocks in second matrix, carrying <u>same</u> indices as the first, but having corresponding CG-blocks as elements. \bigcirc means element-wise multiplication of first & second matrices.

v

$$\begin{split} \mathbf{1}_{\mathbf{z}} & \doteq \begin{cases} \frac{\operatorname{record}}{\operatorname{idex}} & \frac{\operatorname{bond} 1}{\zeta_{1}} & \frac{\operatorname{site} 2}{\zeta_{\mathbf{z}}} & \frac{\operatorname{diamensions}}{\zeta_{\mathbf{z}}} & \frac{\operatorname{data}}{\zeta_{\mathbf{z}}} & \frac{\operatorname{cGC}}{\zeta_{\mathbf{z}}} & \frac{\operatorname{diamensions}}{\zeta_{\mathbf{z}}} & \frac{\operatorname{data}}{\zeta_{\mathbf{z}}} & \frac{\operatorname{cGC}}{\zeta_{\mathbf{z}}} & \frac{\operatorname{diamensions}}{\zeta_{\mathbf{z}}} & \frac{\operatorname{data}}{\zeta_{\mathbf{z}}} & \frac{\operatorname{cGC}}{\zeta_{\mathbf{z}}} & \frac{\operatorname{cGC}}{\zeta_$$

for both first matrix and second block matrix, rows are labeled by $(\mathfrak{Q}_{2}, \mathfrak{i}_{2}, \mathfrak{R}_{3})$, columns by $(\mathfrak{Q}_{3}, \mathfrak{i}_{3})$.



٢ t

sparse way of storing Hamiltonian for sites 1 to 3 [see Sym-II.5(12)]: れ ¥ 53/4 01. $\widetilde{S_1 \cdot S_2 \cdot \mathbf{1}_s} + \widetilde{\mathbf{1}_r \cdot S_2 \cdot S_3}$ = SY4 (12)2 1 (H[@3]) CGC CGC-dim This information can be Q3 stored in the format -3/4 1, 2 (3) ん 53/4 1, 4 3/2 Yz. eigenenergies do not depend on degenerate multiplets! $H_{(Q_{1})} | Q_{5}, \overline{\iota}_{3}; q_{3} \rangle = E_{[Q_{2}]} \overline{\iota}_{3} | Q_{2}, \overline{\iota}_{3}; q_{3} \rangle$ **Diagonalize H:** (14) $|Q_{3}, \overline{\iota}_{3}; q_{3}\rangle = |Q_{3}, \iota_{3}; q_{3}\rangle U_{[Q_{3}]}^{\iota_{3}} \overline{\iota_{3}}$ (12) $= \left(\begin{array}{c} * & * \\ * & * \\ & * \end{array} \right) \bigcirc$ ۲ (16) for both first matrix for third matrix, for both matrices, and second block matrix rows are labeled by (Q_3, i_3) , rows are labeled by (Q_2, i_2, R_3) , rows are labeled by (Q_2, v_2, R_3) , columns by $(Q_3, \overline{c_3})$. columns by $(Q_3, \overline{\iota}_3)$. columns by (23, 23). sum on $\dot{\boldsymbol{\iota}}_{3}$ is implied, yielding matrix multiplication: CGC factor is merely a spectator ! $\begin{pmatrix} \mathbf{I} & \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{I} & \mathbf{I} \end{pmatrix} \times \begin{pmatrix} \mathbf{S} & \mathbf{S} \\ \mathbf{S} & \mathbf{S} \\ \mathbf{I} & \mathbf{I} \end{pmatrix} = \begin{pmatrix} \mathbf{S} & \mathbf{O} \\ \mathbf{S} & \mathbf{S} & \mathbf{I} \end{pmatrix}$ $\left[1^{O_{2},R_{2}}O_{3}\right]_{i_{3}}^{i_{2}}\cdot\left[U_{[O_{2}]}\right]_{i_{3}}^{i_{3}}=\left[A^{O_{2},R_{3}}Q_{3}\right]_{i_{2}}^{i_{2}}$

This illustrates the general statement: in the presence of symmetries, A-tensors factorize:

$$F^{(0,i;q),(R,j;\tau)}(S,k;s) = (A^{\alpha R}_{S})^{ij}_{k} (C^{\alpha R}_{S})^{q\tau}_{s}$$

$$(17)$$

$$\begin{array}{c|c} Q_{i} z_{j} q_{i} & S_{i} j_{j} s \\ \hline R_{i} j_{j} r \end{array} = \begin{array}{c|c} Q_{i} z_{i} & S_{i} j_{i} \\ \hline R_{i} q_{i} & S_{i} s \\ \hline R_{i} j_{i} & R_{i} r \end{array}$$

$$(18)$$