
Sym-II.1

Motivation, review of SU(2) basics1.

Reminder: SU(2) basics

SU(2) generators: 

Casimir operator:

Commuting operators: 

Irreducible multiplet:

Dimension of multiplet: 

Reminder:  for Abelian symmetries, sum rule led to block-diagonal Hamiltonian.

For non-Abelian symmetries, e.g. SU(2), there are more possibilities: 

Coupling two spin 1/2: 

General: 

Dimensions: 

Such direct products occur everywhere in tensor networks:

Hilbert spaces: 

direct product decomposition into direct sum

If Hamiltonian coupling the two spins is SU(2) invariant, will be block-diagonal in basis of total spin:

direct product basis direct sum basis

Hamiltonian will be block-diagonal in basis of total spin.

Goal: learn how to systematically construct such a basis in MPS language.

More generally: learn how exploit symmetries for tensor networks, when each leg of each tensor

refers to symmetry multiplets, not individual states.

(irrep)

Symmetries II: Non-Abelian
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has SU(2) symmetry.

Define 

and 

Symmetry eigenstates can be labeled

'multiplet label' distinguishes different multiplets having same spin 

with

reduced matrix elements in block

For each      , we just have to find the reduced Hamiltonian                   and diagonalize it. 

Goal: find systematic way of dealing with multiplet structure in a consistent manner.

Consider Heisenberg spin chain: 

'spin label' or 'symmetry label' or 
'irrep label' (upper case S)

'spin projection label' or 'internal label' (lower case s),
distinguishes states within multiplet

Dimension of multiplet: 

Highest weight state:

Lowest weight state:

then are SU(2) generators, 
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Sym-II.2(needed when adding new site to chain)

Irreducible representation (irrep) of symmetry group forms a vector space:

Decomposition of tensor product of two irreps into direct sum of irreps: 

'Outer multiplicity' is an integer specifying how often the irrep         occurs in the 

decomposition of the direct product                             . 

For SU(2), we have for 

otherwise

For other groups, e.g. , the outer multiplicity can be 

Action of generators:

dimensions:

    transforms generators into block-diagonal form:

for 

The basis transformation          is encoded in Clebsch-Gordan coefficients (CGCs):

completeness in direct product space

CGC = 

States in new basis,                           are eigenstates of with eigenvalue

(requiring extra book-keeping 
effort, see Sym-III.2)

'irrep label' 'internal label'

2. Tensor product decomposition
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Sym-II.3

An 'irreducible tensor operator' 

transforms analogously (to bra):

Example 1:  Heisenberg Hamiltonian is SU(2) invariant, 

hence transforms in           representation of SU(2):

Example 2: SU(2) generators, transform in                (vector) representation of SU(2):

(scalar)

Wigner-Eckardt theorem

Every matrix element of a tensor operator factorizes as 'reduced matrix elements' times 'CGC':

We will see: a factorization similar to (4) also holds for       -tensors of an MPS!

In particular, for Hamiltonian, which is a scalar operator: 

CGCs encode sum rules:

Hamiltonian matrix for block    
sum rules

Consider an SU(2) rotation, 

A spin multiplet forms an 'irreducible representation' (irrep), i.e. it transforms under this rotation as:

representation matrix for spin-S irrep,
of dimension

3. Tensor operators
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Sym-II.4

Local state space for spin      :

Singlet: 

Triplet: 

Transformation matrix for decomposing the direct product representation into direct sum:

site 2

Transforming operators from direct product to direct sum basis

repr. of SU(2) generators: 

In direct product basis, the generators have the form

(self-study: check details!)

(self-study: check details!)

direct product | direct sum

4. Example: direct product of two spin 1/2's
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Transformed into new basis, all operators are block-diagonal:

These 4x4 matrices indeed satisfy

So, they form a representation of the SU(2) operator algebra on the reducible space

Futhermore, we identify: on       :

on       : 

Now consider the coupling between sites 1 and 2,                    . How does it look in the new basis?

These matrices are not block-diagonal, since the operators represented by them break SU(2) symmetry.

But their sum, yielding                  , is block-diagonal: 

The diagonal entries are consistent with the identity

for

for
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In section Sym-II.6 we will need . In preparation for that, we here compute
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Sym-II.5

Basis transformation (Clebsch-Gordan coefficients):

Let us find in this basis.

Combining  Sym-II.4, (17-19)               with  Sym-II.4, (22-24)          , we readily obtain

'first doublet'

'second doublet'

'quartet'

first doublet second doublet quartet

direct product | direct sum

5. Example: direct product of three spin-1/2 sites
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Beautifully blocked and diagonal in 

symmetry labels, in agreement with 

Wigner-Eckardt theorem, cf. Sym-II.3 (5'):

with reduced matrix elements
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Sym-II.4

Why does A-matrix factorize? Consider generic step during iterative diagonalization:

Suppose Hamiltonian for sites      to       has been diagonalized:

Add new site, with Hamiltonian for sites       to             expressed in direct product basis of

previous eigenbasis and physical basis of new site:      

Transform to symmetry eigenbasis, i.e. make unitary tranformation into direct sum basis, using CGCs:

sums over all repeated indices implied:

By Wigner-Eckardt theorem: 
diagonal in all symmetry labels!

Now diagonalize and make unitary transformation into energy eigenbasis:

block labeled by
with elements labeled byH couples multiplets             from same symmetry sector, 

states within each multiplet are left unchanged/not scrambled

Diagrammatic depiction is more transparent / less cluttered:

composite index:composite index:

specifies which multiplets 
from          yield the 
multiplet       for 

symmetry ensures that this is diagonal in spin indices!

6. A-matrix factorizes
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Combined transformation from old energy eigenbasis to new energy eigenbasis:

A-matrix factorizes, into product of reduced A-matrix and CGC !!

independent of      ,
hence we have 
degenerate multiplets

factorization happens here: CGC are independent of i-indices!
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Sym-II.8

CGC encodes sum rules, see Sym-II.3 (4)
thus ensuring block-diagonal structure for H

To avoid proliferation of factors of 1/2, Weichselbaum uses the following notation:

2(spin) 2(spin projection) = 

We will stick with standard notation, though. 

Sites 0 and 1

record
index

bond 0 site 1 bond 1 dimensions data CGC

General notation: for  virtual bonds, for physical legs.

dimensions

CGC CGC-dim
Since Heisenberg Hamiltonian contains 

only two-site terms, Hamiltonian for a single

site is trivially = 0:

Sites 1 and 2

dimensions
(see Sym-II.4.7)

For first matrix, rows are labeled by                 , columns by             . Each of its elements must be multiplied by the CG 

block labeled                    . To indicate this graphically, arrange these blocks in second matrix, carrying same indices as the 

here, no multiplet label for physical leg
hence 

   specifies which multiplets          from
yield the multiplet        for

tripletsinglet

block column index

block row index

7. Bookkeeping: basis transformations spin 1/2 
chain
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record
index

bond 1 site 2 bond 2 dimensions data CGC

Hamiltonian for sites 1 to 2   [see Sym-II.5(20)]:

CGC CGC-dim

Sites 2 and 3

dimensions

record
index

bond 2 site 3 bond 4 dimensions data CGC

for both first matrix and second block matrix, rows are labeled by                   , columns by             .

(see Sym-II.5.5) first 
doublet

second
doublet

For first matrix, rows are labeled by                 , columns by             . Each of its elements must be multiplied by the CG 

block labeled                    . To indicate this graphically, arrange these blocks in second matrix, carrying same indices as the 

first, but having corresponding CG-blocks as elements.        means element-wise multiplication of first & second matrices.

sparse way of storing

quartett

block column index

block row index
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Hamiltonian for sites 1 to 3   [see Sym-II.5(12)]:

CGC CGC-dimThis information can be

stored in the format

Diagonalize H:

for third matrix, 

rows are labeled by                , 

columns by                 .

for both matrices, 

rows are labeled by                  , 

columns by             .

sum on        is implied, yielding matrix multiplication:

This illustrates the general statement: in the presence of symmetries, A-tensors factorize:

eigenenergies do not depend on 
degenerate multiplets!

for both first matrix 

and second block matrix  

rows are labeled by                    , 

columns by               .

CGC factor is
merely a spectator !

sparse way of storing
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