
MPS-I.1

Square brackets indicate that each site has a different          matrix. We will often omit them and

use the shorthand,                                                since the     on      uniquely identifies the site.

dummy index

dummy index

dummy sitedummy site

1. Overlaps, matrix elements

Ket:

General ket:

General bra:

Overlap:

summation over repeated indices implied

Recipe for overlaps: contract all physical legs of bra and ket.

General operator:

Matrix 

elements: 

Recipe for matrix elements: contract all physical legs of bra and ket with operator.

We first consider general quantum states, then matrix product states (MPSs):

Now consider matrix product states:

Recipe for ket formula: as chain grows, attach new matrices            on the right 

(in same order as vertices in diagram), resulting in a matrix product of           matrices .

index-reading order

These unit matrices lead to 
contractions, depicted graphically 

by connected legs!

MPS I: Basic properties of matrix product states
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Exercise: derive this result algebraically from (7a), (8a)!

If we would perform the matrix multiplication first, for fixed        , and then sum over      , 

we would get          terms, each of which is a product of          matrices. Exponentially costly!

We expressed all matrices via their Hermitian conjugates by transposing indices and inverting arrows. 

To recover a matrix product structure, we ordered the Hermitian conjugate matrices to appear in the 

opposite order as the vertices in the diagram.

Recipe for bra formula: as chain grows, attach new matrices       on the left, 

(in opposite order as vertices in diagram), resulting in a matrix product of          matrices. 

Overlap:

Add dummy sites at left and right, so that first and last M's have two virtual indices, just like other M's . 

Bra:

Matrix elements: 

Recipe: contract all physical indices with each other, and all virtual indices of neighboring tensors.

index-reading order

Recipe: contract all

physical indices!
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But calculation becomes tractable if we rearrange summations, to keep number of 'open legs'

as small as possible (here = 2):

Diagrammatic depiction: 'closing zipper' from left to right.

The set of two-leg tensors               can be computed iteratively:

Initialization:

Iteration step:

Final answer:

Cost estimate (if all A's are           ):

One iteration:

(identity)

fixed fixedsum sum

sum over 

yields 
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Total cost:

Remark: a similar iteration scheme can be used to 'close zipper from right to left':

Initialization: iteration step:

(identity)

Normalization Use above scheme, with

fixed fixedsum sum

sum over

yields 

'Closing the zipper' is also useful for computing expectation values of local operators, 

i.e. operators acting non-trivially only on a few sites (e.g. only one, or two nearest neighbors).

One-site operator   (acts non-trivially only on one site,      )

E.g. for spin        :

Action on 

full chain: 

Matrix element between two MPS: 

Close zipper from left using                 [see (15)]   and from right using                   [see (20)].

Action on site      : 

   Page 4    



Two-site operator   (acts nontrivally only on two sites,     and        )   [e.g. for spin chain:                ]

Matrix elements:

Action on 
sites     ,       :
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MPS-I.2

Graphical notation for left-normalization:  

Then, closing the zipper left-to-right is easy, since all reduce to identity matrices:

Hence:

identity matrix

Left-normalization

A 3-leg tensor                  is called 'left-normalized' if it is a left isometry, i.e. if it satisfies

Computation of normalization and matrix elements of local operators is simpler if the MPS is built from 

tensors with special normalization properties, called 'left-normalized' or 'right-normalized' tensors. 

Explicitly:

Such an      defines an 'isometry' from space labeled by its left indices to space labeled by its right indices.

distance-preserving map (in index-free notation: if                , then                                        )                   

Consider a 'left-normalized MPS', i.e. one constructed purely from left isometries:

The right-angled triangle contains complete information about all arrows attached to it: 

for        , incoming arrows to sharp angles, outgoing arrow from right angle,

for        , outgoing arrows from sharp angles, incoming to from right angle:

Hence, there is no need to draw arrows explicitly when using                       !

We suppress arrows for  C, too, since they can be reconstructed from arrows of constitutent As.

More compact notation: draw 'left-pointing diagonals' at vertices

2. Left- and right-normalized MPS
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Hence:

Moreover, the matrices for site 1 to any site                define an orthonormal state space: 

close the zipper

Even if truncation is involved, the resulting MPS are useful, precisely because they are parametrized by a 

limited number of parameters (namely elements of      tensors). E.g., they can be optimized variationally by 

minimizing energy      DMRG). 

no truncation!
truncation 
possible

We suppress arrows for  C, too, since they can be reconstructed from arrows of constitutent As.

These state spaces are built up iteratively from left to right through left-isometric maps: 

Each            defines an isometric map

to a new (possibly smaller) basis:

Call this state space

where is local state space of site 

If is a unitary, then 

truncation was involved!

no truncation

If is an isometry, then 

Hence only if all A's are not only isometries but unitaries.

old basis new basis
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left-to-right index order as in diagram

Iterating this, we obtain kets and bras of the form

A three-leg tensor is called right-normalized if it is a right isometry, i.e. if it satisfies

Graphical notation for right-normalization: 

Explicitly:

Right-normalization

So far we have viewed an MPS as being built up from left to right, hence used right-pointing arrows 

on ket diagram. Sometimes it is useful to build it up from right to left, using left-pointing arrows.

Building blocks:

index-reading order

Such a       defines an 'isometry' from space labeled by its left indices to space labeled by its right indices.

More compact notation: draw 'right-pointing diagonals' at vertices
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For 'right-normalized MPS', constructed purely from right isometries, closing zipper right-to-left is easy:

Moreover, the matrices for site N to any site                define an orthonormal state space: 

close the zipper

Summary: MPS built purely from left-normalized        's or purely from right-normalized        's  

are automatically normalized to 1. Shorter MPSs built on subchains automatically define orthonormal

state spaces.

Again, right-angled triangles complete information on arrows, so arrows can be suppressed. 

These state spaces are built up iteratively from right to left through right-isometric maps:

Each              defines an isometric map

to a new (possibly smaller) basis:

Call this state space

only if all B's are not only isometries but unitaries.

old basis new basis
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MPS-I.3

(i) Left-canonical (lc-) MPS:

[all tensors are left-normalized, denoted       ]

(ii) Right-canonical (rc-) MPS:

[all tensors are right-normalized, denoted      ]

(iii) Site-canonical (sc-) MPS:
[left-normalized to left of site     ,
right-normalized  to right of site     ]

(iv) Bond-canonical (bc-) (or mixed) MPS:
[left-normalized from sites 1 to      ,
right-normalized from sites         to     ]

Any matrix product can be expressed in infinitely many different ways without changing the product:

'gauge freedom'

Gauge freedom can be exploited to 'reshape' MPSs into particularly convenient, 'canonical' forms: 

can be chosen diagonal

These states form an orthonormal set: 

In general,                                          .

These states form an orthonormal set:

The states form an orthonormal set: 

The states form an orthonormal set: 

(MPS-I.2.6)

true subset

(MPS-I.2.18)

3. Various canonical MPS forms
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Strategy: take a pair of adjacent tensors,                 , and use SVD to yield left isometry on the left:

The property ensures left-normalization:

Truncation, if desired, can be performed by  discarding some of 

The smallest singular values,

(but (10) remains valid!)

Note: instead of SVD, we could also me QR (cheaper!)

By iterating, starting from                      , we left-normalize                   to

Given:

[or with index: 

can be chosen diagonal

Goal : left-normalize                          to

The states form an orthonormal set: 

How can we bring an arbitrary MPS into one of these forms?

Transforming to left-normalized form

with
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diamond indicates  
single number

Strategy: take a pair of adjacent tensors,            , and use SVD  to yield right isometry on the right:

Here,                                     ensures right-normalization:

Starting form

with

Goal : right-normalize                to

Transforming to right-normalized form

Given:

[or with index: 

lc-form:

The final singular value, determines normalization:

,  move leftward up to

To right-normalize entire chain, choose / and at last site,

To left-normalize the entire MPS, choose

As last step, left-normalize last site using SVD on final         :

determines normalization.
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(c) Transforming to site-canonical form

both indices upstairs!

both indices upstairs!

Examples  [self-study!]

(a) Right-normalize a state with right-pointing arrows!

Hint: start at

and note the up       down changes  in index placement.

Summary:  using SVD, products of two matrices can be converted into forms containing a left 

isometriy on the left or right isometry on the right:                            

This can be used iteratively to convert any of the four canonical forms into any other one. 

(b) Left-normalize a state with left-pointing arrows!

Hint: start at

Left-normalize sites          to          , starting from site        .

Then right-normalize sites         to             , starting from site       .

Result:
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form an orthonormal set:The states

This is 'local site basis' for site        . Its dimension                   , is usually                 of full Hilbert space.

(d) Transforming to bond-canonical form

Start from (e.g.) sc-form, use SVD for                          , combine                   with neighboring         , 

or                 with neighboring           .

(Exercise: add indices!)

The states                                                                     form an orthonormal set.

This is called the 'local bond basis for bond        '  (from site       to        ). It has dimension 

(      = dimension of singular matrix         ).

form 'local bond basis'  for bond               (from site         to       ).

(Exercise: add indices!)

involves 

(Exercise: verify this, using                             and                        .)

sites      to 
involves 
sites        to 

involves 

sites       to 

involves 

sites      to 
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