MPS I: Basic properties of matrix product states

1. Overlaps, matrix elements < {l; | 1{/)

We first consider general quantum states, then matrix product states (MPSs):

General ket:  |%) = 16,) ... I5ls,) Chofe = |3) 7 . 56:,( 7 )(\ 0)
(6 ‘75/3’) 4 69
summation over repeated indices implied
+ <Y 6' G ¢ Gﬁ
Generalbra: (| = C%f¢ (|l | fsy| = Cz (3] @ ®
\__f_—’+ \-V\P; —_—
- C’ER‘ = .0
Overlap: ('\Htp C IR <€')<€ll (‘g\ <£> l6,)1s, > C""""z (34)
These unit matrices lead to & 2 sl
contractions, depicted graphically - l ﬂ- P 1%, = 1 s o~
by connected legs! E 6
»v" E‘ )3‘ ! 6‘ L;‘;)
= Co_-_l C s
Recipe for overlaps: contract all physical legs of bra and ket.
7, 6¢ 17
General operator: O = |g) O =(s 0}
: TTT T
6! 6, ©p
Matrix T o= g B
elements: Y lolv) = Cc,,( ‘“> O € |¢ ’C e

Ny ”

1%z 5 s
i L O | |
- C;‘i Oc/? Cd‘ ?\a: 5"\ g J ! g{cz' (5]>)

Recipe for matrix elements: contract all physical legs of bra and ket with operator.

Now consider matrix product states:

Ket: dummy index
dummy;{ site dummy site
-2 I § ., M Mpy Moy Mg >
1= 18 M M5 %, mE s )
Mol M 3 M
?P[]Y [t]'r? BEBRILY lg*. ()
dummy iridex e oL 63 S
M
Recipe for ket formula: as chain grows, attach new matrices /“\s on the right dﬁ-ﬂ
(in same order as vertices in diagram), resulting in @ matrix product of M®  matrices . \_‘j

index-reading order

o
Square brackets indicate that each site has a different M"™ matrix. We will often omit them and

oG, 46 . . . . .
use the shorthand, r’\ £ F = M[gfﬁ ) since the £ on % uniquely identifies the site.
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Add dummy sites at left and right, so that first and last M's have two virtual indices, just like other M's

Bra:

<yl

index-reading order

/b3 A o(G' - tP m
Mm“ ) FMm L M[l:c]zl <5l M M ee iﬁ%ﬁ; #a)
T

M[ lG1‘!/“ MB] 63FM[2] G;o&ﬂ‘[q‘: M ué (34

— ﬂtz] ﬂ[z; Ml

n

"

Mg

We expressed all matrices via their Hermitian conjugates by transposing indices and inverting arrows

To recover a matrix product structure, we ordered the Hermitian conjugate matrices to appear in the
opposite order as the vertices in the diagram.

‘.
Recipe for bra formula: as chain grows, attach new matrices Ms on the left,

4
(in opposite order as vertices in diagram), resulting in @ matrix product of M+ matrices

Mol Mm@ M(&} Mgy
w FETE YA .
Overlap: < lygy = 6 |& r:—; ‘ | 6, R:CPefOZ-traCT all
. IS f"/L R ¢ . -‘V\: ) physical indices! (80)
~ ~ At
A P ¥ i
_ m‘{', ~ /S‘ ~ u (6’ dGL /46'"
= M[”]GI fo.. Mf?.] ' ( MC'IG ‘ ['] ® t’L] .”M[”] ‘ (gL)
N A 62t , P
— L —d

Recipe: contract all physical indices with each other, and all virtual indices of neighboring tensors

Matrix elements: xg n Mm g )!
o T T e
<E100¢> = | | (o
] ]
X—?& ?% < e JF‘—MJV:J ‘:ﬁ
~ ~k o4
M Mo M
~+l ~1, ‘ o o't o' ¢! G, M6,
= . J o o 6y...6% M M o .
o6 Mo e | U6 P 0 o Mo o M 0n
——3

L S

1 T !

Exercise: derive this result algebraically from (7a), (8a)!

If we would perform the matrix multiplication first, for fixed T , and then sum over = ,

we would get o(i terms, each of which is a product of 2& matrices. Exponentially costly! @
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But calculation becomes tractable if we rearrange summations, to keep number of 'open legs'

as small as possible (here = 2):

<L? ' lf) ()
]
=: C[‘,] |
~ 4 ( ~4 .1 ~ d;
- Is 'I' 16y 2
0o M 6, ”m 50 1 ”n « Mea g - Mm ! (2)
Y K‘
=: Ct(lx
- — L
_.  F
& 3
L 3
\
= Cg,
Diagrammatic depiction: 'closing zipper' from left to right
® B « R g
L4 —> _3 '> [ »K > A/ \f k(x s Sﬁ P ¥
C[,]{w';‘ }Gz'?s + [6g = C[l] {_ }57. 16 %‘ P = C[‘z]{i“‘s * N2 = CGC'I
S X < YA = ¥Xx
a8 A6 f )
The set of two-leg tensors C[z] can be computed iteratively:
' i
Initialization: CME = /E CM , = | ()
X
(identity)
A
s col - A
Iteration step: C = C 6 Yol o 1%
sum over G (I]E ) (£ - 7 C.[l] A : C[Z I]'L 7\
yields c"'] A 1 A 05-)
Final answer: ~ !
<1(‘ l"P > = C[t'_‘, (16}
Cost estimate (if all A's are Dy D):
%))

One iteration: 'D-LA ) 3 32‘ dD 1 A 4 )
—n— A P e Py _ -

fixed sum fi>'<ed sum @ - E 1

[ . a ﬂ z(’ ,1 , Y 4

Age 1
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fixed sum fixed sum ; - . 4" h
fe o A1F N, o

Total cost: ~ D Bp{ L )

Remark: a similar iteration scheme can be used to 'close zipper from right to left':

S S . N

=7 7 4

6.4 0.
&L
>
L4

ya — A
<

! \ RN

| rsi r\j Dti‘”] = 6,‘1\4{/L l/ ‘o't_‘ F}D[i‘\ = ... jDI(] (‘q>
L

A

( ! 1 1 —»—j
e - : ; . = G,
Initialization: ‘ 3 D{:LH] (} / Itizingzrs;ip. ( j -Dm ' 2 D[ﬂﬂl
1

(identity) yields Deey 1 v (29

S

Normalization (| ¢ ) = ¢ Use above scheme, with ™M = M

'Closing the zipper' is also useful for computing expectation values of local operators,
i.e. operators acting non-trivially only on a few sites (e.g. only one, or two nearest neighbors).

One-site operator (acts non-trivially only on one site, { )

A / b ()
Action on site { : O[@J = l@'e' D, Oetez < S'L\ i ’
Y ¢ ( ¢ o ¢ _(° os
E.g. for spin ‘/; : (5¢) s =3('.) (S ¢ - o) ‘(S A c=\to

Action on 4 6 % 6y s " *
fl chain: 07 = 180106 -0 el"'f}&(sl . { l 1 % }} .

— 6§

v ] £ ¢
0% )
Matrix element between two MPS:
M
X2 > > ——S X
¢ o ¢
(-{‘; l 6 \ ‘? > = (2 o 6 )
¢ - ) - .
! o | 1Y Dierg
Xl ;J}( <X o N{' ‘5'
M

Close zipper from left using C[ 2-1) [see (15)] and from right using D[e+.] [see (20)].
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~f o! oGy g
= Mf’l‘l,l“‘ Cn_'] « M £ D[hl]F O‘Q ¥
Two-site operator (acts nontrivally only on two sites, { and €+ ) [e.g. for spin chain: Sﬂ- 3‘;“ ]
S ]
A_ction{on A ) N 0 lo¢h ’ -
sites £, L+1: O[t,tfl] = l‘tvnl"-&) (s’ K lu\ '}\ ("’)
6'1 s'l'u
Matrix elements: MR] ¥ Mien]
R e e e ¢ 1 X
oA ql rQH
{§1Oqqql#d= af ¢ L1 A4 tg
‘\GL ‘6‘0:
K < ( (4 ? > > X

- ~f r B |
A MF%N Clrmg o M*%F M fp Digal, o o )



2. Left- and right-normalized MPS

Computation of normalization and matrix elements of local operators is simpler if the MPS is built from
tensors with special normalization properties, called 'left-normalized' or 'right-normalized' tensors.

Left-normalization

A 3-leg tensor 4 ow/s is called 'left-normalized' if it is a left isometry, i.e. if it satisfies

H{'A -1 ~ Explicitly: (F]*/q)pﬁ: A ﬁlcd\ ﬂ“sﬁ = ﬂ.ﬁ;s (I)

Such an A defines an 'Egmetry' from space labeled by its left indices to space labeled by its right indices.
distance-preserving map (in index-free notation: if Y = Ax | then lfj = ¢AAx = xty)

Graphical notation for left-normalization: Aa
. - 1 at f : (
oL 6 = 26)
_F:D_h b K ¢ ‘ FlJr
6 (
§ 6
More compact notation: draw 'left-pointing diagonals' at vertices
a at A
& ~- p p
"—T-P G KQ e, = E (26}
- o —4—1—4— P' L (‘ ﬁc
at identity matrix

The right-angled triangle contains complete information about all arrows attached to it:
for ﬂ , incoming arrows to sharp angles, outgoing arrow from right angle,
for H'l' , outgoing arrows from sharp angles, incoming to from right angle:
. - . |
Hence, there is no need to draw arrows explicitly when using —< , _L !

Consider a 'left-normalized MPS', i.e. one constructed purely from left isometries:

2y = Y¥Y v 7 739
o 4 63:
Pl = A A A A 4

@)

Then, closing the zipper left-to-right is easy, since all C (e} reduce to identity matrices:

! a! o o % 2 @’A— (2 )\
C [o} = [‘ , C [('& m: g_‘t( = [ . C[L]E = C[lq] J:f = [ .
® ~® ! VoAl A
()
We suppress arrows for C, too, since they can be reconstructed from arrows of constitutent As.

Hence:

er—er—Y. ——— ¥ — Y - —~~
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We suppress arrows for C, too, since they can be reconstructed from arrows of constitutent As.

Hence: — v . R L)
<”f('f7 ) £ x: - ¥= O - [x_-: ' @ ¢
Moreover, the matrices for site 1 to any site { =, N define an orthonormal state space:
fea wa f|5'>®...@|€z>
xT TV y NEA)/& = 5. 4% a* ﬂrz]'% (5)

(—q j } ] g j - [i g@x\@ﬁz - 17, © ©

close the zipper

Call this state space \Ve = Span ﬂ":}?))zl CV,oV,0.-.©Vy ®

where \IQ = .cta“ f ¢ 9_'71 is local state space of site €

These state spaces are built up iteratively from left to right through left-isometric maps:

l

Each —‘FIL defines an isometric map N Y \\I'\ fll A A .9%.)_}

to a new (possibly smaller) basis: . 6, "¢.,J \:i 6
A - '

. _ , 'XGQ

eV, =V, [, = 180, = Ig)igy), A ©
old basis new basis

If A[ is a unitary, then A}M(‘Vl) = ,(,'m(\yl).d;w(\vl_,) =>  no truncation )

"D!— = - De-i
If A( is an isometry, then Dy « ol - Dyg_, => truncation was involved! (10)

Hence \VL = \V, ®V,® ...® \Vg only if all A's are not only isometries but unitaries.
K

truncation no truncation!

Dl = dz possible

Even if truncation is involved, the resulting MPS are useful, precisely because they are parametrized by a
limited number of parameters (namely elements of A tensors). E.g., they can be optimized variationally by
minimizing energy =>DMRG).
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Right-normalization

So far we have viewed an MPS as being built up from left to right, hence used right-pointing arrows

on ket diagram. Sometimes it is useful to build it up from right to left, using left-pointing arrows.

Building blocks:

< M1
3 0p1 < I <X
\0‘> = [ G'x > MO( N \-(y\index-reading order .

left-to-right index order as in diagram o
1

~
G, X €,
65 = e lg. D M Sy, i )
6,., S
L=
¢ A
ul o= Mk eyl R (1)
L-———r*’_i_
L= M pfx ‘
€g-1
(8
G = M, Falde (IR o
23
Iterating this, we obtain kets and bras of the form
i A 6 o \
_ 64 6, o "‘X < <‘]:"
h’bﬁ - l‘ﬁ“x-&---“h M, ---Mpx' Mo(é-:'l + 5]
— = 6\ v, Oy
2=
T y ?‘" 1«
o 3 +
<y| = Mig, Mg, -~ Mag <O <6,., 146, ‘*j—é-—)—’*i); te
L AP
6
A three-leg tensor B !3 is called right-normalized if it is a right isometry, i.e. if it satisfies
\
f' .. "' £ 6o¢ 'I' ﬁ' (sl
BRa =1 Explicitly: 2B ) = B -1 (13)
. (5" - 5~ E.¢ -1,
Such a -Bf defines an 'isometry' from space labeled by its left indices to space labeled by its right indices.
Graphical notation for right-normalization: & f’
0 35)' P
K ”'GJ g S (132)
P“_(F: roop N
6 p' bf F"
More compact notation: draw 'right-pointing diagonals' at vertices
1" 6 B
, & 5L ~7 _ p — (125)
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(125)

Again, right-angled triangles complete information on arrows, so arrows can be suppressed.

For 'right-normalized MPS', constructed purely from right isometries, closing zipper right-to-left is easy:

“o =TI - 10 =D -2 ow

Moreover, the matrices for site N to any site  { = | ..., N define an orthonormal state space:
I l6)@...016,)
2 B 3 3B 3 6 4 £
AT T \ = 6.0 (2% ™. g%, @
T ¥ By, = T [ 2% 8%,

)T [ \ U } X) ‘<§”@D£= 1N;\ © @
A = f A

close the zipper

Call this state space \\/\/ ¢ = sfm\ {’@ )>£z C \\Q@\l} (D'"@\\{C (zv)
+1

These state spaces are built up iteratively from right to left through right-isometric maps:

{
Each —,J;- defines an isometric map A_FLF_F_’,_P_X 1-(—[;-@').l
to a new (possibly smaller) basis: 6, O |1 6y
v
6\
: — | &, — = & t
Bx W+:®W£ \\’\/L ! %ﬁ >2-|-;l€2> lé} >l I%a >!_“|6,} > B} (23)
old basis new basis
WL =V oV ®..0V only if all B's are not only isometries but unitaries. (29
L7 1 £

Summary: MPS built purely from left-normalized A 'sor purely from right-normalized Brs
are automatically normalized to 1. Shorter MPSs built on subchains automatically define orthonormal
state spaces. @
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3. Various canonical MPS forms MPS-1.3

Any matrix product can be expressed in infinitely many different ways without changing the product:

M M’ = (M M)ZM M = ﬁ /:Iv / 'gauge freedom' 0)

/\4’

A M
Gauge freedom can be exploited to 'reshape' MPSs into particularly convenient, 'canonical' forms:

(i) Left-canonical (Ic-) MPS: X L. q‘_&
[all tensors are left-normalized, denoted A ] ! T j’ \’ \1 ? @
i
1Ty =18y A% Ata = 1 | : :[ ®
(MPSIZ6)
These states form an orthonormal set: le ) 1# ol (&
2
I
n general, \/‘ c #
true subset
P b 8 7 & )
(ii) Right-canonical (rc-) MPS: F—v [ )
[all tensors are right-normalized, denoted B ] L £

@F% = (;)g (8™.. Bst)pl E&+ =1 :Q = j ()

MPS 1.2.18
These states form an orthonormal set: < @ﬁ | & P? ( ) 1 ﬁ p %)
* G
1y
(ii) Site-canonical (sc-) MPS: ¥ A A . (‘j . b 8 x  =: d %)
[left-normalized to left of site £ , b \, & I g r r ™ g
right-normalized to right of site ,§ ] 6 p \.,_,_2
" % G,
- f
| ‘l"ku'7£—l ( &}ﬁzu

|92> - |€:Zt (f—)r'... HQ-()uMi"‘ZF (36[.-.“- BGx )P‘ - l§fs\7£ﬂl6‘ﬁ N-}‘Qt_l'v‘e(s‘ﬂ(s U]

The states | #, o‘,F) = lipwlfg,'? "I’u)c_l form an orthonormal set: {«'¢" '|,6,p) = 1“;166'.1.';;

(r)
AAdaqa S Bss 5"F
(iv) Bond-canonical (bc-) (or mixed) MPS: "Tﬁ—mrﬁ = oc»—)—o—-t-‘i (n)
[left-normalized from sites 1to £ , c g
right-normalized from sites { + to N ] o, S G
|1_kﬂ7 -t (§F7£+|
> . I & . 6. o
|4>= Io-zt(ne.., Ace) S F(gsen . REDd = 3 (Epltw), S ¢ (12}

@

\,\ can be chosen diagonal

] {
— - I . a\._ 1T\ 1 \ - o ' . V2% BN | VP 1'“ iﬂF
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"\ can be chosen diagonal
(

The states [, ) += |&g), |113¢)& form an orthonormal set: &' 'l g5 = 1“; ipf (3)

How can we bring an arbitrary MPS into one of these forms?

Transforming to left-normalized form

X G)

Given: gy = |€_>ﬁ( M M "2\

[or withindex: |G 5 = P ]

0, ¥ X (6
Goal : left-normalize M e MO~ 5’ 7 j ’ L l l )

!
Strategy: take a pair of adjacent tensors, MM , and use SVD to yield left isometry on the left:

=: Aﬁ'l with A= (A ! :=s\1+/4‘ G

=

ﬂ /"“’Tﬁ
M svp, 4 S v oM g
A = > 7—0(' = —_| ) 5, C& 2 I — i = & 3 S' ; I o (81
*‘ F /‘\6" XD 'A A {S 6! . ﬁ o
-

( . f ~ e
U Mt = (Mdf;\\(@:\a‘ VMFM‘MN) = R R W

The property (/(‘-0( = {  ensures left-normalization: A fﬁl = 1 (o)
5)

Truncation, if desired, can be performed by discarding some of 100 k
The smallest singular‘values, 1072 |

T x gl

- but (10) remains valid! .
g =1 A =f K"
. 1078+ | A

Note: instead of SVD, we could also me QR (cheaper!) o "

!
By iterating, starting from € V74 ®2 e left-normalize MS' to m e ,

X

M MMM A A M M u
] T 11

n
Y
x

M
;_I
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bobod REREEE

To left-normalize the entire MPS, choose ,Z =L .

N,
As last step, left-normalize last site using SVD on final “

6
M A% s
oy 16 1k W ks .
™M X‘ = U ( S(—-\,.'_;{-v\’: ’X-T T o Ny x }T?\ 0')
n]6£l S, ! 6 6; Kf)
¢ 6 dia_mond indicates
lc-form: ( u> - l-6’_7£ (ﬂ F 4 > S single number

T
The final singular value, $,  determines normalization: <L(,[zp = lS,[ ) 3

Transforming to right-normalized form

L}

>
REEN
»N

X

/3

""—E

M
Given:  (y) = {?)x (M* F
[or with index: | S, = Sismér<rer> ]

Mo
Srare

£ 6,
Goal : right-normalize ] £ to M **!

—>—\§2

b B
f7

I
Strategy: take a pair of adjacent tensors, /! #7 , and use SVD to vyield right isometry on the right:

'vz;«/l’-_-f"lb(é(/TL /‘715 with ﬁ—M'«s ) 3:(/1 . (19

o “ M svyp, M }J )

= -—<——D—<—-0 (r

-éﬂi—-{\—%—o( Ar T—T "
o 6" e ¢!

Mo(e-(s M P (M 6-(5(/{ S )k\/’r q,) _ ﬁma)'& R

(c p A
+ . - )
Here, \/ '\ = 1L ensures right-normalization: B B =1 . (16)
g, 6, J
Starting form ] €~ pm £ , move leftward up to M KMQ“,

To right-normalize entire chain, choose / and at last site, [ = |

Ao | ‘['
M)G‘IX = U, S,l \V/ \6') . S determines normalization. ()

’ - v -1
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e L —\—
=t S, Bf)
{

Summary: using SVD, products of two matrices can be converted into forms containing a left
isometriy on the left or right isometry on the right:

mu=an - fig 3

This can be used iteratively to convert any of the four canonical forms into any other one.

Examples [self-study!]

(a) Right-normalize a state with right-pointing arrows! * 1’ + > ,\‘ ? T *
Hint: start at m % Sz
and note the up = down changes in index placement.
“ Houos M__®
M SVD
« —)T;—{\—x = “_rwe—D——r—-O-——e-q.]—X =x—>—1—7’\+1-x (194)
£t 4 & L,
S 6 6 °"(

\[\ both indices upstairs!
6 (50‘ ( 2re & a2 + 6- ~ 6 A \

(b) Left-normalize a state with left-pointing arrows! xmx

Hint: start at MG‘ ,461. '

Mo m ks Vi oM A H -
sc—r——{—e- = —flﬁ—‘—éﬁ <1< B = X—W 20)
GOLGL @ 9\ A x,‘; 6
! 6¢ 2 \ 62

L both indices upstairs!

R R T SR X

(c) Transforming to site-canonical form

>

C""_

MmN A g AoM oMM M p

1 T3 X 1 T* 7 I 1 I~ I X X IP
Wah | |§F7£+J

Left-normalize sites | to /-t , starting from site 1 . @2)

Then right-normalize sites L to L , starting from site ;C .

Result:
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> = 16yl (B2 % )P' Lo 1. A6 (AT %) M %f

| 5}7& ! N)"nl -1 (®
\® o\ 6 WY, M* %P (ta)
The states { )%, r,> = \§P>l*‘ L6 \\J_/J}M form an orthonormal set:
, U RENPY
SR ACTE A IR IR (20

(Exercise: verify this, using A {n =1 and R 6+= /D

4
This is 'local site basis' for site L. Its dimension Da' d. DF' is usually <<< A" of full Hilbert space.

(d) Transforming to bond-canonical form

= t +
Start from (e.g.) sc-form, use SVD for M = (A S \/ , combine © V with neighboring &,
or(D 1A with neighboring /A

@ﬂﬂﬂS&B

TETFT © TRET - B s

involves involves
sites /41 toi, sites | to

~ 1

M = AS Y A = (L . R = \/+B (Exercise: add indices!)  (¢#
The states | ')( , ')\' 5 = l@z?w' ‘1]_2 ;\>£ form an orthonormal set.
S , - T
<ﬂl1“>\,9\ ) = 5&3‘8 ¥ (29)

This is called the 'local bond basis for bond £ ' (from site L to e ). It has dimension .4

( + = dimension of singular matrix 5 ).

&@ﬁ 5353

A A M B '
% X = @xz "l’;\z_l Sn (2a)
G

involves involves
V = IAS U+ ﬁ A L , B = \)1. (Exercise: add indices!) (30)

sites € to sites | to &-1

| }’ A\ 5 = |§Az ‘ ‘1@ A}e-- form 'local bond basis' for bond £ -1 (fromsite - to ¢ ).
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