1. Overlaps, matrix elements $\langle\tilde{\psi} \mid \psi\rangle$

We first consider general quantum states, then matrix product states (MPSs):

General ket: $|\psi\rangle=\left|\sigma_{\chi}\right\rangle \ldots\left|\sigma_{2}\right\rangle\left|\sigma_{1}\right\rangle C^{\sigma_{1}, \ldots, \sigma_{x}}=:|\vec{\sigma}\rangle C^{\vec{\sigma}}$ (ϵ Hy $^{\text {h }}$)

summation over repeated indices implied
General bra: $\langle\psi|=\underbrace{\overline{C^{\sigma_{1}, \ldots, \sigma_{\mathcal{L}}}}\left\langle\sigma_{1}\right|\left\langle\sigma_{2}\right| \ldots\left\langle\sigma_{\mathcal{L}}\right|=: \underbrace{C_{\bar{\sigma}_{R}}^{+}}_{:=}\left\langle\overrightarrow{C^{\bar{\sigma}}}\right|}_{=: C_{\bar{\sigma}_{R}}^{+}}$

Overlap: $\langle\tilde{\psi} \mid \psi\rangle=\overline{\bar{C}^{\sigma_{1}^{\prime}}, \ldots, \sigma_{\dot{L}}^{\prime}}\left\langle\sigma_{1}^{\prime}\right|\left\langle\sigma_{2}^{\prime}\right| \ldots\left\langle\sigma_{\dot{L}}^{\prime} \mid \sigma_{\mathcal{L}}\right\rangle \ldots\left|\sigma_{2}\right\rangle\left|\sigma_{1}\right\rangle C^{\sigma_{1}, \ldots, \sigma_{\mathscr{L}}}$
These unit matrices lead to
contractions, depicted graphically $\leadsto \mathbb{1}_{\sigma_{1}}^{\sigma_{1}^{\prime}} \mathbb{1}^{\sigma_{2}^{\prime}} \sigma_{2} \mathbb{1}^{\sigma_{\dot{\alpha}}^{\prime}} \sigma_{\chi}=\mathbb{1}^{\vec{\sigma}^{\prime}} \vec{\sigma}$. by connected legs!

$$
\begin{equation*}
=\tilde{C}_{\vec{\sigma}_{R}}^{\dagger} C^{\vec{\sigma}} \tag{3b}
\end{equation*}
$$

Recipe for overlaps: contract all physical legs of bra and ket.

General operator:

$$
\hat{O}=\left|\vec{\sigma}^{\prime}\right\rangle O^{\vec{\sigma}^{\prime}} \vec{\sigma}\langle\vec{\sigma}|
$$

(4)

Matrix
Matrix
elements:

$$
\begin{align*}
& =C_{\overrightarrow{\sigma_{R}^{\prime}}}^{\dagger} O_{\vec{\sigma}}^{\vec{\sigma} \prime} C^{\vec{\sigma}} \tag{5b}
\end{align*}
$$

Recipe for matrix elements: contract all physical legs of bra and ket with operator.

Now consider matrix product states:
Ket: \quad dummy index

Square brackets indicate that each site has a different M^{σ} matrix. We will often omit them and use the shorthand, $\quad M^{\alpha \sigma_{\ell}}:=M_{[\ell]}^{\alpha \sigma_{\ell}}, \quad$ since the ℓ on σ_{l} uniquely identifies the site.

Add dummy sites at left and right, so that first and last M's have two virtual indices, just like other M's .

Bra:
index-reading order

$$
\begin{equation*}
\overline{M_{\beta}^{\alpha \sigma}}=: M_{\sigma \alpha}^{\dagger \beta} \tag{7a}
\end{equation*}
$$

We expressed all matrices via their Hermitian conjugates by transposing indices and inverting arrows. To recover a matrix product structure, we ordered the Hermitian conjugate matrices to appear in the opposite order as the vertices in the diagram.

Recipe for bra formula: as chain grows, attach new matrices M_{σ}^{\dagger} on the left, (in opposite order as vertices in diagram), resulting in a matrix product of M^{\dagger}, matrices.

Overlap:

Recipe: contract all physical indices!

Recipe: contract all physical indices with each other, and all virtual indices of neighboring tensors.

Exercise: derive this result algebraically from (7a), (Ba)!

If we would perform the matrix multiplication first, for fixed $\stackrel{\rightharpoonup}{\sigma}$, and then sum over $\vec{\sigma}$, we would get $d^{\mathcal{L}}$ terms, each of which is a product of $2 \mathcal{L}$ matrices. Exponentially costly!

$$
\begin{align*}
& \langle\psi|=\overline{M_{[1]}^{l \sigma_{1}}} \overline{M_{[2]}^{\alpha \sigma_{2}}} \bar{M}_{[3]}^{\beta \sigma_{3}} \ldots \ldots M_{[\mathcal{L}] 1}^{\mu \sigma_{y}}\langle\vec{\sigma}| \\
& =M_{[L]}^{\dagger_{1}} \sigma_{2 \mu} \ldots M_{[3]}^{\dagger_{\gamma}} \sigma_{3 \beta} M_{[2]}^{\dagger \beta} \sigma_{2 \alpha} M_{[1] \sigma_{11}}^{\alpha} \tag{76}
\end{align*}
$$

But calculation becomes tractable if we rearrange summations, to keep number of 'open legs' as small as possible (here = 2):

Diagrammatic depiction: 'closing zipper' from left to right.

The set of two-leg tensors $C_{[\ell]}$ can be computed iteratively:

Initialization:

Iteration step:
sum over σ_{l}
yields $C_{\{\ell]}$

$$
C_{[\ell]}{\psi_{\ell^{\prime}}}_{\lambda}^{\lambda}=C_{[l-1]} \underbrace{\stackrel{y}{t \rightarrow \sigma_{l}} \underset{\lambda^{\prime}}{\lambda}}_{\eta^{\prime}}
$$

$$
C_{(l]_{\lambda}}^{\lambda^{\prime}}=\tilde{A}_{\lambda^{\prime}}^{\sigma_{\ell} \eta^{\prime}} C_{[\ell-1] \eta^{\eta^{\prime}}} A_{\lambda}^{\eta \sigma_{\ell}}
$$

Final answer:

$$
\begin{equation*}
\langle\tilde{\psi} \mid \psi\rangle=C_{[\chi]}^{1} . \tag{16}
\end{equation*}
$$

Cost estimate (if all A's are $D_{\gamma} D$):
One iteration:

$$
\begin{equation*}
\underbrace{\lambda^{\prime} \eta^{6}}_{\text {fixed }}<\underbrace{\eta^{\prime} d}_{\text {sum }} \cdot \underbrace{D}_{\lambda^{\lambda^{\prime} \lambda}} \underbrace{D^{2}}_{\text {sum }} \underbrace{d D}_{\eta^{6}} \tag{77}
\end{equation*}
$$

$$
\begin{align*}
& C_{[0]} \sum_{<x}^{x}=\tilde{L} \tag{14}\\
& C_{[0] 1}^{1}=1 \\
& \text { (identity) }
\end{align*}
$$

$$
\begin{array}{llll}
\text { fixed sum } & \text { fixed } & \text { sum } \tag{18}\\
\lambda_{\eta}^{\prime} \eta^{\prime} & \eta^{\prime} & \lambda^{\prime} \lambda & \eta^{6}
\end{array}
$$

Total cost: $\sim D^{3} d \cdot \mathscr{L}$

Remark: a similar iteration scheme can be used to 'close zipper from right to left':

Normalization $\langle\psi \mid \psi\rangle=$? Use above scheme, with $\tilde{M}=M$
'Closing the zipper' is also useful for computing expectation values of local operators, ie. operators acting non-trivially only on a few sites (e.g. only one, or two nearest neighbors).

One-site operator (acts non-trivially only on one site, ℓ)

Action on site $\ell: \quad \hat{O}_{[\ell]}=\left|\sigma_{l}^{\prime}\right\rangle \quad O_{\sigma_{l}}^{\sigma_{l}^{\prime}}\left\langle\sigma_{l}\right| \quad \hat{\sigma}_{\ell}$
E.g. for spin $1 / 2: \quad\left(S_{z}\right)_{\sigma}^{\sigma^{\prime}}=\frac{1}{2}\left(\begin{array}{ll}1 & -1\end{array}\right),\left(S_{+}\right)_{\sigma}^{\sigma^{\prime}}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(S_{-}\right)_{\sigma}^{\sigma^{\prime}}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$

Action on full chain:

Matrix element between two MPS:

Close zipper from left using $C_{[\ell-1]}$ [see (15)] and from right using $D_{[\ell+1]} \quad$ [see (20)].

$$
=\tilde{M}_{\beta^{\prime} \sigma_{l}^{\prime} \alpha^{\prime}}^{\dagger} C_{[\ell-1] \alpha}^{\alpha^{\prime}} M^{\alpha_{l} \beta} D_{[\ell+1]} \beta_{\beta}^{\beta^{\prime}} O_{\sigma_{l}}^{\sigma_{l}^{\prime}}
$$

Two-site operator (acts nontrivally only on two sites, l and $\ell+1$) [e.g. for spin chain: $\vec{S}_{\ell} \cdot \vec{S}_{\ell+1}$]
$\begin{aligned} & \text { Action on } \\ & \text { sites } \ell, l+1:\end{aligned} \quad \hat{O}_{[\ell, \ell+1]}=\left|\sigma_{l+1}^{\prime}\right\rangle\left|\sigma_{l}^{\prime}\right\rangle O_{l}^{\sigma_{l}^{\prime} \sigma_{l+1}^{\prime}} \sigma_{l} \sigma_{l+1}, \sigma_{l}\left|<\sigma_{l+1}\right|$

Matrix elements:

$$
\begin{align*}
& =\tilde{M}_{\beta_{l+1}^{\prime} \sigma_{l+1}^{\prime}}^{\gamma^{\prime}} \tilde{M}_{\gamma^{\prime} \sigma_{l}^{\prime} \alpha^{\prime}}^{\dagger} C_{[l-1] \alpha}^{\alpha^{\prime}} M^{\alpha \sigma_{l} \gamma} M_{\gamma}^{\sigma_{l+1} \beta_{D_{[l+2]}} \beta^{\prime}} O^{\sigma_{l}^{\prime} \sigma_{l+1}^{\prime}} \sigma_{l} \sigma_{l+1} \tag{12}
\end{align*}
$$

Computation of normalization and matrix elements of local operators is simpler if the MPS is built from tensors with special normalization properties, called 'left-normalized' or 'right-normalized' tensors.

Left-normalization

A 3-leg tensor $A^{\alpha \sigma} \beta$ is called 'left-normalized' if it is a left isometry, i.e. if it satisfies

$$
\begin{equation*}
A^{+} A=\mathbb{1} \text {. Explicitly: } \quad\left(A^{\dagger} A\right)_{\beta}^{\beta^{\prime}}=A^{\dagger} \beta_{\sigma \alpha}^{\prime} A_{\beta}^{\alpha \sigma}=\mathbb{1}_{\beta}^{\beta^{\prime}} \tag{I}
\end{equation*}
$$

Such an A defines an 'isometry' from space labeled by its left indices to space labeled by its right indices. distance-preserving map (in index-free notation: if $y=A x$, then $y^{+} y=x^{+} A^{+} A x=x^{+} x$)

Graphical notation for left-normalization:

More compact notation: draw 'left-pointing diagonals' at vertices

The right-angled triangle contains complete information about all arrows attached to it: for A, incoming arrows to sharp angles, outgoing arrow from right angle, for A^{\dagger}, outgoing arrows from sharp angles, incoming to from right angle: Hence, there is no need to draw arrows explicitly when using T, \perp !

Consider a 'left-normalized MPS', i.e. one constructed purely from left isometries:

Then, closing the zipper left-to-right is easy, since all $C_{\{\ell]}$ reduce to identity matrices:

We suppress arrows for C, too, since they can be reconstructed from arrows of constitutent As.
Hence:
\qquad

We suppress arrows for C , too, since they can be reconstructed from arrows of constituent As.
Hence:

Moreover, the matrices for site 1 to any site $\quad \ell=1, \ldots, N$ define an orthonormal state space:

Call this state space

$$
\begin{equation*}
V_{l}=\operatorname{span}\left\{\left|\Psi_{\lambda}\right\rangle_{l}\right\} \subseteq \mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \ldots \otimes \mathbb{V}_{l} \tag{7}
\end{equation*}
$$

where $\quad \mathbb{V}_{l}=\operatorname{span}\left\{\left|\sigma_{\ell}\right\rangle\right\} \quad$ is local state space of site ℓ

These state spaces are built up iteratively from left to right through left-isometric maps:
Each $\frac{A}{Y}$ defines an isometric map to a new (possibly smaller) basis:

$A_{l}: \mathbb{V}_{\ell} \otimes \mathbb{V}_{l-1} \rightarrow \mathbb{V}_{l}$,

$$
\begin{equation*}
\left.\left|\sigma_{l}\right\rangle\left|\Psi_{\lambda^{\prime}}\right\rangle_{l-1} \mapsto \underset{\text { old basis }}{ } \underset{\text { new basis }}{\mid \Psi_{\lambda}}\right\rangle_{\ell}=\left|\sigma_{l}\right\rangle\left|\Psi_{\lambda^{\prime}}\right\rangle_{l-1} A^{\lambda^{\prime} \sigma_{l}} \tag{8}
\end{equation*}
$$

If A_{ℓ} is a unitary, then $\operatorname{dim}\left(\mathbb{V}_{\ell}\right)=\operatorname{dim}\left(V_{\ell}\right) \cdot \operatorname{dim}\left(\mathbb{V}_{\ell-1}\right) \Rightarrow$ no truncation

$$
\begin{equation*}
D_{\ell}=d \cdot D_{l-1} \tag{9}
\end{equation*}
$$

If A_{ℓ} is an isometry, then $D_{\ell}<d \cdot D_{\ell-1} \quad \Rightarrow$ truncation was involved!

Hence $V_{l}=V_{1} \otimes \mathbb{V}_{2}\left(\Delta \ldots \otimes \mathbb{V}_{\ell}\right.$ only if all A's are not only isometries but unitaries.

$$
D_{l}=d^{l}
$$

Even if truncation is involved, the resulting MPS are useful, precisely because they are parametrized by a limited number of parameters (namely elements of A tensors). E.g., they can be optimized variationally by minimizing energy \Rightarrow DARG).

Right-normalization

So far we have viewed an MPS as being built up from left to right, hence used right-pointing arrows on et diagram. Sometimes it is useful to build it up from right to left, using left-pointing arrows.

Building blocks:

$$
\begin{align*}
& |\alpha\rangle=\left|\sigma_{\mathcal{L}}\right\rangle M_{\alpha}^{\sigma_{\mathcal{L}} \mid} \\
& \text { left-to-right index order as in diagram } \\
& \left.|\beta\rangle=\rfloor_{\mathcal{L}}\right)\left(\sigma_{\chi-1}\right)^{h^{\nu}} M_{\beta} \sigma_{\alpha-1}^{\alpha} M_{\alpha} \sigma_{\mathcal{L}} \tag{12}\\
& \langle\alpha|=\underbrace{M_{1 \sigma_{x}{ }^{+}}^{M_{x} \mid}\left\langle\sigma_{x}\right|}_{:=\overline{M_{\alpha}{ }^{6} \mid}} \tag{13}\\
& \langle\beta|=M_{1 \sigma_{X}}^{\dagger} \alpha M_{\alpha \sigma_{\mathcal{L}}-1}^{\dagger} \beta<\sigma_{\mathcal{L}}\left|<\sigma_{\mathcal{L}}\right| \tag{44}
\end{align*}
$$

Iterating this, we obtain kets and bras of the form

$$
\begin{align*}
& |\psi\rangle=\left|\sigma_{\mathcal{L}}\right\rangle\left|\sigma_{\mathcal{L}-1}\right\rangle \ldots\left|\sigma_{1}\right\rangle M_{1}^{\sigma_{1} \lambda} \ldots \underbrace{M_{\beta} \sigma_{\mathcal{L}-1}^{\alpha}} M_{\alpha} \sigma_{\mathcal{L}}{ }^{1} \tag{15}\\
& \langle\psi|=M_{1 \sigma_{\mathcal{L}}}^{\dagger} M_{\alpha \sigma_{\chi-1}}^{\dagger} \ldots M_{\lambda \sigma_{1}}^{1}\left\langle\sigma_{1}\right| \ldots\left\langle\sigma_{\alpha-1}\right|<\sigma_{\mathcal{L}} \mid \tag{16}
\end{align*}
$$

A three-leg tensor $B_{\beta}{ }^{\sigma \alpha}$ is called right-normalized if it is a right isometry, ie. if it satisfies

$$
\begin{equation*}
B B^{\dagger}=\mathbb{1} \text {. Explicitly: } \quad\left(B B^{\dagger}\right)_{\beta}^{\beta^{\prime}}=B_{\beta}^{\sigma \alpha} B_{\alpha \sigma}^{\dagger} \beta^{\prime}=\mathbb{1}_{\beta}^{\beta^{\prime}} \tag{17}
\end{equation*}
$$

Such a \mathbb{B}^{\dagger} defines an 'isometry' from space labeled by its left indices to space labeled by its right indices.

Graphical notation for right-normalization:

(18a)

More compact notation: draw 'right-pointing diagonals' at vertices

$$
\begin{equation*}
={ }^{\beta} \longrightarrow \tag{186}
\end{equation*}
$$

Again, right-angled triangles complete information on arrows, so arrows can be suppressed.
For 'right-normalized MPS', constructed purely from right isometries, closing zipper right-to-left is easy:

Moreover, the matrices for site N to any site $\quad \ell=1, \ldots, N$ define an orthonormal state space:

λ| B | B | B | B | B |
| :--- | :--- | :--- | :--- | :--- |
| | r | r | P | r |
| ℓ | | | | \mathcal{L} |x

$$
\begin{equation*}
\left\langle\Phi^{\lambda^{\prime}} \mid \Phi_{\lambda}\right\rangle_{\ell}=\mathbb{I}_{\lambda}^{\lambda^{\prime}} \tag{21}
\end{equation*}
$$

Call this state space

$$
\begin{equation*}
W_{l}=\operatorname{span}\left\{\left|\Phi_{\lambda}\right\rangle_{\ell}\right\} \subseteq \mathbb{V}_{\ell} \otimes \mathbb{V}_{\ell+1} \otimes \ldots \otimes \mathbb{V}_{\ell} \tag{22}
\end{equation*}
$$

These state spaces are built up iteratively from right to left through right-isometric maps:
Each $\frac{B}{P}$ defines an isometric map to a new (possibly smaller) basis:

$$
\begin{align*}
& B_{l}: W_{l+1} \oplus \mathbb{V}_{l} \rightarrow W_{l}, \tag{23}\\
& \underset{\substack{ \\
\text { old basis }}}{\left|\Phi_{\lambda^{\prime}}\right\rangle_{l+1}\left|\sigma_{l}\right\rangle} \underset{\text { new basis }}{\left|\Phi_{\lambda}\right\rangle_{l}}=\left|\Phi_{\lambda^{\prime}}\right\rangle_{l+1}\left|\sigma_{l}\right\rangle B_{\lambda} \sigma_{l} \lambda^{\prime}
\end{align*}
$$

$V_{l}=V_{\ell} \otimes \mathbb{V}_{l+1} \otimes \ldots \otimes \mathbb{V}_{\mathcal{L}} \quad$ only if all B's are not only isometries but unitaries.

Summary: MPS built purely from left-normalized A 's or purely from right-normalized B 's are automatically normalized to 1 . Shorter MPSs built on subchains automatically define orthonormal state spaces.

Any matrix product can be expressed in infinitely many different ways without changing the product:

$$
\begin{equation*}
M M^{\prime}=\underbrace{(M u)}_{\tilde{M}} \underbrace{-1}_{\tilde{M}^{\prime}} M^{\prime})=\tilde{M} \tilde{M}^{\prime} \quad \text { 'gauge freedom' } \tag{1}
\end{equation*}
$$

Gauge freedom can be exploited to 'reshape' MPSs into particularly convenient, 'canonical' forms:
(i) Left-canonical (Ic-) MPS:
[all tensors are left-normalized, denoted A]

$$
\begin{equation*}
\left|\Psi_{\alpha}\right\rangle_{l}=\left|\vec{\sigma}_{l}\right\rangle_{l}\left(A^{\sigma} \ldots A^{\sigma} l\right)_{\alpha}^{\prime} \quad A^{+} A=\mathbb{1} \quad \square=\square \tag{3}
\end{equation*}
$$

These states form an orthonormal set: $\quad\left\langle\Psi^{\alpha^{\prime}} \mid \bar{\Psi}_{\alpha}\right\rangle_{\ell} \stackrel{(\text { MPS-I.2.6) }}{=} \mathbb{1}^{\alpha^{\prime}}{ }_{\alpha}$ In general,

$$
\begin{equation*}
\mathbb{V}_{l} \subset \mathbb{H}^{\ell}{ }_{\text {true subset }} \tag{5}
\end{equation*}
$$

(ii) Right-canonical (rc-) MPS:

[all tensors are right-normalized, denoted B]
$\left.\left|\Phi_{\beta}\right\rangle_{l}=|\vec{\sigma}\rangle_{l}\left(B^{\sigma_{1}} \ldots B^{\sigma}\right)_{\beta}^{\prime} \quad B B^{\dagger}=1 \quad \square\right]$
These states form an orthonormal set: $\quad\left\langle\Phi^{\beta^{\prime}} \mid \Phi_{\beta}\right\rangle_{\ell}^{(\text {MPS-I.2.18 }}=\mathbb{1}^{\beta^{\prime}}{ }_{\beta}$
(iii) Site-canonical (sc-) MPS:
[left-normalized to left of site ℓ, right-normalized to right of site ℓ]

$|\Psi\rangle=|\vec{\sigma}\rangle_{\mathcal{L}}\left(A^{\sigma_{1}} \ldots A^{\sigma_{l-1}}\right)_{\alpha}^{\prime} M^{\alpha \sigma_{l} \beta}\left(B^{\sigma} l_{r 1} \ldots B^{\sigma} \mathcal{L}\right)_{\beta}^{\prime}=\left|\Phi_{\beta}\right\rangle_{l+1}\left|\sigma_{l}\right\rangle\left|\Psi_{\alpha}\right\rangle_{l-1} M^{\alpha \sigma_{l} \beta}$
The states $|\alpha, \sigma, \beta\rangle:=\left|\Phi_{\beta}\right\rangle_{\ell+1}\left|\sigma_{\ell}\right\rangle\left|\Psi_{\alpha}\right\rangle_{\ell-1}$ form an orthonormal set: $\left\langle\alpha^{\prime}, \sigma^{\prime}, \beta^{\prime} \mid \alpha, \sigma, \beta\right\rangle=\mathbb{1}_{\alpha}^{\alpha^{\prime}} \mathbb{1}_{\sigma^{6}} \mathbb{1}_{\beta}^{\beta^{\prime}}$
(iv) Bond-canonical (bc-) (or mixed) MPS: [left-normalized from sites 1 to ℓ, right-normalized from sites $\ell+1$ to N]

$$
\begin{equation*}
|\psi\rangle=|\vec{\sigma}\rangle_{\mathcal{L}}\left(A^{\sigma!} \ldots A^{\sigma_{l}}\right)_{\alpha}^{1} S^{\alpha \beta}\left(B^{\sigma_{l+1}} \ldots B^{\sigma} \text { can be chosen diagonal }\right)_{\beta}^{\prime}=\sum_{\alpha \beta}\left|\Phi_{\beta}\right\rangle_{l+1}\left|\psi_{\alpha}\right\rangle_{l-1} S^{\alpha \beta} \tag{12}
\end{equation*}
$$

The states $|\alpha, \beta\rangle:=\left|\Phi_{\beta}\right\rangle_{\ell+1}\left|\Psi_{\alpha}\right\rangle_{\ell} \quad$ form an orthonormal set: $\left\langle\alpha^{\prime}, \beta^{\prime} \mid \alpha, \beta\right\rangle=\mathbb{1}_{\alpha}^{\alpha^{\prime}} \mathbb{1}_{\beta}^{\beta^{\prime}}$

How can we bring an arbitrary MPS into one of these forms?

Transforming to left-normalized form

Given:

$$
\begin{equation*}
|\psi\rangle=|\vec{\sigma}\rangle_{\mathcal{L}}\left(M^{\sigma_{1}} \ldots M^{\sigma_{\mathcal{L}}}\right) \tag{5}
\end{equation*}
$$

[or with index: $\quad\left|\Psi_{\alpha}\right\rangle=x \rightarrow T_{T} \longrightarrow T_{-\alpha}$]
Goal : left-normalize
M^{61} to $M^{\sigma} l-1$

Strategy: take a pair of adjacent tensors, $M M^{\prime}$, and use SVD to yield left isometry on the left:

$$
\begin{equation*}
M M^{\prime}=U S V^{\dagger} M^{\prime}=: A \tilde{M}^{\prime}, \quad \text { with } \quad A:=U, \tilde{M}^{\prime}:=S U^{\dagger} M^{\prime} \tag{7}
\end{equation*}
$$

$M_{\beta}^{\alpha \sigma} M^{\prime \beta \sigma^{\prime}} \alpha^{\prime}=\left(U^{\alpha \sigma}{ }_{\lambda}\right)\left(S^{\lambda} \lambda^{\prime} V^{\dagger}{ }_{\beta}^{\prime} M^{\prime \beta \sigma^{\prime}} \alpha^{\prime}\right)=A^{\alpha \sigma} \lambda \hat{M}^{\prime \lambda \sigma^{\prime}}{ }_{\alpha^{\prime}}$
The property $\quad u^{+} U=\mathbb{1}$ ensures left-normalization: $\quad A^{+} A=\mathbb{1}$

Truncation, if desired, can be performed by discarding some of The smallest singular values,

$$
\sum_{\lambda=1}^{N} \rightarrow \sum_{\lambda=1}^{v^{\prime}} \quad \text { (but (10) remains valid!) }
$$

Note: instead of SVD, we could also me QR (cheaper!)

By iterating, starting from $M^{\sigma_{1}} M^{\sigma_{2}}$, we left-normalize $\quad M^{\sigma_{1}}$ to $M^{\sigma_{\ell-1}}$.

$$
\uparrow \uparrow t \downarrow t \quad x^{\prime} x^{-} t_{l} \downarrow t
$$

To left-normalize the entire MPS, choose $\ell=\mathscr{L}$.
As last step, left-normalize last site using SVD on final \tilde{M} :

Ic-form: $\quad|\psi\rangle=\mid \vec{\sigma})_{f}\left(A^{\sigma_{1}} \ldots A^{\sigma_{d}}\right)_{S_{1}} \quad \begin{gathered}\text { diamond indicates } \\ \text { single number }\end{gathered}$
The final singular value, s, determines normalization: $\langle\psi \mid \psi\rangle=\left|s_{1}\right|^{2}$.

Transforming to right-normalized form

Given: $\quad|\psi\rangle=|\vec{\sigma}\rangle_{\mathscr{L}}\left(M^{\sigma_{1}} \ldots M^{\sigma_{\mathscr{L}}}\right)$

[or with index: $\quad\left|S_{1}\right\rangle=S_{1}+T \leqslant\langle\leqslant$]
Goal : right-normalize $M^{6} \mathcal{L}$ to $M^{6} \ell+1$

Strategy: take a pair of adjacent tensors, $M M^{\prime}$, and use SVD to yield right isometry on the right:

$$
\begin{aligned}
& M M^{\prime}=M U S U^{\dagger} \equiv \tilde{M} B \text {, with } \quad \tilde{M}=M^{\prime} U S, \quad B=U^{\dagger} \text {. }
\end{aligned}
$$

$$
\begin{align*}
& M_{\alpha}^{\sigma \beta} M_{\beta}^{\prime} \sigma^{\prime} \alpha^{\prime}=\left(M_{\alpha}{ }^{\sigma \beta} U_{\beta}^{\lambda} S_{\lambda}^{\lambda^{\prime}}\right)\left(V_{\lambda^{\prime}}^{\dagger} \sigma^{\prime} \alpha^{\prime}\right)=\tilde{M}_{\alpha}^{\sigma \lambda^{\prime}} B_{\lambda^{\prime}} \sigma^{\prime \alpha^{\prime}} \tag{15}
\end{align*}
$$

Here, $V^{\dagger} V=1 \quad$ ensures right-normalization: $\quad B B^{\dagger}=1$.
Starting form $M^{\sigma_{\mathcal{L}-1}} M^{\sigma_{\mathscr{L}}} \quad$, move leftward up to $M^{\sigma_{l}} M^{\sigma_{l+1}}$.
To right-normalize entire chain, choose / and at last site, $\quad l=1$

$$
\begin{equation*}
\tilde{M}_{1}^{\sigma_{1} \lambda}=\underbrace{U_{1}^{\prime}} \underbrace{S_{1}^{\prime}} \underbrace{V_{1}^{+} \sigma_{1} \lambda}_{-1} . \quad \text { s, determines normalization. } \tag{17}
\end{equation*}
$$

$$
\sim_{=1} \underbrace{\underbrace{}_{B_{1} \sigma_{1} \lambda}}_{s_{1}}
$$

Summary: using SVD, products of two matrices can be converted into forms containing a left isometriy on the left or right isometry on the right:

$$
\begin{equation*}
M M^{\prime}=A \tilde{M}^{\prime}=\tilde{M} B \tag{18}
\end{equation*}
$$

This can be used iteratively to convert any of the four canonical forms into any other one.

Examples [self-study!]

(a) Right-normalize a state with right-pointing arrows!

Hint: start at

$$
m^{\sigma}{ }_{\mathscr{L}}-1 M^{\sigma} \mathcal{L}
$$

and note the up \longleftrightarrow down changes in index placement.

$M^{\alpha \sigma}{ }_{\beta} M^{\beta \sigma^{\prime}}=\left(M^{\alpha \sigma}{ }_{\beta} U_{\lambda}^{\beta} S^{\lambda \lambda^{\prime}}\right)\left(V^{\dagger} \lambda^{\prime} \sigma^{\prime}\right)=\tilde{M}^{\alpha \sigma \lambda} B_{\lambda}^{\sigma^{\prime}}(1 q b)$
(b) Left-normalize a state with left-pointing arrows!

${ }^{x} \boldsymbol{T}^{\leftarrow} \uparrow h^{x}$

Hint: start at $\quad M^{G_{1}} M^{\sigma_{2}}$:

$M_{1}^{\sigma_{1} \alpha} M_{\alpha}^{\sigma_{2} \beta}=\left(U^{1 \sigma_{1}}\right)\left(S^{\lambda} \lambda^{\prime} V_{\lambda^{\prime}}^{+} M_{\alpha}^{\sigma_{2} \beta}\right)=A_{1}^{\sigma_{1} \lambda} \tilde{M}_{\lambda}^{\sigma_{2} \beta}$
(c) Transforming to site-canonical form

Then right-normalize sites \mathcal{L} to $\ell+1$, starting from site \mathcal{L}.
Result:

$$
\begin{align*}
|\psi\rangle & =\underbrace{\left|\sigma_{N}\right\rangle \ldots\left|\sigma_{l+1}\right\rangle\left(B^{\sigma_{l+1}} \ldots B^{\sigma_{\mu}}\right)_{\beta}^{\prime}}_{\left|\Phi_{\beta}\right\rangle_{l+1}}\left|\sigma_{l}\right\rangle \underbrace{\left(\sigma_{l-1}\right) \ldots\left|\sigma_{1}\right\rangle\left(A^{\sigma_{1}} \ldots A_{l-1}^{\sigma_{l-1}}\right)_{\alpha}^{\prime}}_{\left|\psi_{\alpha}\right\rangle_{l-1}} \bar{M}^{\alpha \sigma_{l} \beta}{ }_{(23)}^{\left|\Phi_{\beta}\right\rangle_{l+1}\left|\sigma_{l}\right\rangle\left|\Psi_{\alpha}\right\rangle_{l-1} \bar{M}^{\alpha \sigma_{l} \beta}} \\
& ={ }^{(24)}
\end{align*}
$$

The states $\left.\quad\left|\alpha, \sigma_{l}, \beta\right\rangle:=\left|\Phi_{\beta_{l+1}}\right| \sigma_{l}\right\rangle\left|\Psi_{\alpha}\right\rangle_{l-1} \quad$ form an orthonormal set:

$$
\begin{equation*}
\left\langle\alpha^{\prime}, \sigma_{l}^{\prime}, \beta^{\prime}\left(\alpha, \sigma_{l}, \beta\right\rangle=\delta_{a}^{\alpha^{\prime}} \delta_{\sigma_{l}}^{\sigma_{l}^{\prime}} \delta_{\beta}^{\beta^{\prime}}\right. \tag{25}
\end{equation*}
$$

(Exercise: verify this, using $A^{+} A=\mathbb{1}$ and $B B^{\dagger}=\mathbb{1}$.)
This is 'local site basis' for site ℓ. Its dimension $D_{\alpha} \cdot d \cdot D_{\beta}$ is usually $\lll d^{\mathscr{d}}$ of full Hilbert space.
(d) Transforming to bond-canonical form

Start from (e.g.) sc-form, use SVD for $\bar{M}=U S V^{\dagger}$, combine (1) V^{+}with neighboring B, or (2) U with neighboring A.

$$
\begin{aligned}
& \bar{M}=u s v^{\dagger} \quad A=u, \hat{B}=v^{\dagger} B \quad \text { (Exercise: add indices!) (zr) }
\end{aligned}
$$

The states $\left.\quad\left|\lambda, \lambda^{\prime}\right\rangle:=\left|\Phi_{\lambda_{\ell+1}}{ }^{\prime}\right| \Psi_{\lambda}\right\rangle_{\ell} \quad$ form an orthonormal set.

$$
\begin{equation*}
\left\langle\bar{\lambda}, \bar{\lambda} \cdot \mid \lambda, \lambda^{\prime}\right\rangle=\delta_{\lambda}^{\bar{\lambda}} \delta_{\lambda^{\prime}}^{\bar{\lambda}^{\prime}} \tag{28}
\end{equation*}
$$

This is called the 'local bond basis for bond ℓ ' (from site ℓ to $l+1$). It has dimension r. r ($\uparrow=$ dimension of singular matrix S).

$\bar{M}=u s v^{\dagger} \quad \tilde{A}=A U, B=V^{\dagger}$
(Exercise: add indices!) (30)
$\left.\left|\lambda, \lambda^{\prime}\right\rangle:=\left|\Phi_{\left.\lambda_{\ell}\right\rangle_{\ell}} \cdot\right| \Psi_{\lambda}\right\rangle_{\ell-1}$ form 'local bond basis' for bond $\ell-1 \quad$ (from site $\ell-1$ to ℓ).

