## 1．Basis change


defines an orthonormal basis for a state space $V_{l}=\operatorname{span}\left\{\left|\Psi_{\lambda}\right\rangle_{\ell}\right\} \subseteq V_{1} \otimes V_{2} \otimes \ldots \otimes V_{\ell}=: V^{\otimes \ell}$
since


Indeed：

$$
\begin{align*}
& \hat{P}_{\ell} \hat{P}_{l}=\left|\Psi^{\lambda^{\prime}}\right\rangle_{\ell}\langle\underbrace{\left\langle\Psi_{\lambda^{\prime}}\right| \cdot \mid \Psi^{\lambda}}_{\mathbb{1}_{\lambda^{\prime}}}\rangle_{\ell}\left\langle\Psi_{\lambda}\right|=\hat{P}_{l}  \tag{5}\\
& =\left\{\begin{array}{l}
x-d \lambda d \lambda 1 \\
x y y y d y d
\end{array}\right.  \tag{6a}\\
& = \tag{bb}
\end{align*}
$$

Operators defined on $V_{\ell}{ }^{(๑)}$ can be mapped to $V_{l}$ using these projectors：

$$
\begin{equation*}
\hat{O}=\frac{+1+1+1}{t+\lambda+\lambda_{l}^{\lambda}} \stackrel{\hat{P}_{l}}{\longmapsto} \quad \hat{O}_{l}=: \hat{P}_{l} \hat{O} \hat{P}_{l} \quad=\left|\Psi_{\lambda^{\prime}}\right\rangle_{l}\left[O_{l}\right]_{\lambda l}^{\lambda^{\prime}}\left\langle\Psi^{\lambda}\right| \tag{7}
\end{equation*}
$$



Simplest case：1－site operator acting only on site $\ell$ ：

$$
\begin{align*}
& \hat{o}_{\ell}=\text { 快怗, } \tag{4}
\end{align*}
$$

$$
\begin{aligned}
& \stackrel{\substack{\text { close } \\
\text { ziperer } \\
=\\
j}}{\begin{array}{l}
A \\
I_{l}^{\prime} \\
\hat{\sigma}_{l} \\
\sigma_{i}^{\prime}
\end{array}}
\end{aligned}
$$

During iterative diagonalization, the space $\mathbb{V}_{l}$ is constructed through a sequence of isometric maps: (possibly involving truncation)

Each $\frac{A}{Y}$ defines an isometric map to a new (possibly smaller) basis:

$A_{l}: \mathbb{V}_{\ell} \otimes \mathbb{V}_{l-1} \rightarrow \mathbb{V}_{l}$

$$
\begin{equation*}
\underset{\substack{\text { old basis }}}{\left|\sigma_{l}\right\rangle\left|\Psi_{\lambda^{\prime}}\right\rangle_{l-1}} \underset{\text { new basis }}{\left|\Psi_{\lambda}\right\rangle_{l}}=\left|\sigma_{l}\right\rangle\left|\Psi_{\lambda^{\prime}}\right\rangle_{l-1}{ }^{\lambda^{\prime} \sigma_{l}} \tag{10}
\end{equation*}
$$

Each such map also induces a transformation of operators defined on its domain of definition.
It is useful to have a graphical depiction for how operators transform under such maps.
Consider an operator defined on $V^{(x)(l-1)}$, represented on $V_{l-1}$ by $\hat{O}_{l-1}=\hat{P}_{l-1} \hat{O} \hat{P}_{l-1}$
What is its representation on $V_{l}$ ? $\quad \hat{O}=\hat{O}_{l-1} \otimes \mathbb{1}_{\ell}=\frac{+\uparrow+i}{t+i}+$


Explicitly:

$$
\begin{equation*}
\left[O_{l}\right]_{\lambda}^{\lambda^{\prime}}=A^{\dagger \lambda^{\prime}} \sigma_{l} \bar{\lambda}^{\prime}\left(O_{l-1}\right)^{\bar{j}^{\prime}} \bar{\lambda} A^{\bar{\lambda} \sigma_{l}} \lambda \tag{14}
\end{equation*}
$$

Similarly, for operator with non-trivial action also on site : $\hat{O}_{l}=\hat{O}_{l-1} \otimes \hat{O}_{l}=\frac{+4+1}{4} 1$ Just replace $\psi$ by ${\underset{\sim}{~}}_{\substack{~}}$ in (9):

$$
\begin{equation*}
=A_{\sigma_{l}^{\prime}{ }^{\prime}}^{\dagger \lambda^{\prime}}\left[O_{l-1}\right]_{\lambda}\left[O_{l}\right]_{l}^{\sigma_{l}^{\prime}}{ }_{\sigma_{l}} A^{\bar{\lambda} \sigma_{l}}=\left(O_{l-1}\right]^{\bar{\lambda}^{\prime}} \bar{\lambda}\left[\tilde{O}_{l}\right]_{\bar{l}^{\prime}}{ }^{\bar{\lambda}} \tag{17}
\end{equation*}
$$

Thus, the isometry $A$ maps the local operator into an effective basis associated with $\mathbb{V}_{l-1}$, and $\mathbb{V}_{l}$

Consider spin- $1 / 2$ chain:

$$
\begin{equation*}
\hat{H}^{N}=\sum_{l=1}^{L} \hat{\vec{S}}_{l} \cdot \vec{h}_{l}+J \sum_{l=2}^{\mathscr{L}} \hat{\vec{s}}_{l} \cdot \hat{\bar{\delta}}_{l-c} \tag{1}
\end{equation*}
$$

For later convenience, we write the spin-spin interaction in covariant (up/down index) notation:

$$
\begin{align*}
\hat{\vec{S}}_{l} \cdot \hat{\vec{S}}_{l-1} & =\hat{S}_{l}^{x} \hat{S}_{l-1}^{x}+\hat{S}_{l}^{y} \hat{S}_{l-1}^{y}+\hat{S}_{l}^{z} \hat{S}_{l-1}^{z} \\
& =\hat{S}_{l}^{+}+\hat{S}_{l l-1}+\hat{S}_{l}^{\dagger}-\hat{S}_{-l-1}+\hat{S}_{l}^{z+} \hat{S}_{z l-1}=\hat{S}_{l}^{+a} \hat{S}_{l-1 a} \tag{2}
\end{align*}
$$

where we defined the operator triplets

$$
\begin{equation*}
\hat{S}_{a} \in\left\{\hat{S}_{+}, \hat{S}_{-}, \hat{S}_{z}\right\}, \quad \hat{S}^{+a} \in\left\{\hat{S}^{+}, \hat{S}^{+}, \hat{S}^{+z}\right\} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\hat{S}_{z}:=\hat{S}^{\dagger_{z}}=\hat{S}^{z}, \quad \hat{S}_{ \pm}:=\frac{1}{\sqrt{2}}\left(\hat{S}^{x} \pm \hat{i}^{y}\right)=: \hat{S}^{\dagger_{\bar{f}}} \tag{4}
\end{equation*}
$$

In the basis $\left\{\left|\vec{\sigma}_{\mathcal{L}}\right\rangle\right\}=\left\{\left|\sigma_{\mathcal{L}}\right\rangle_{,} \ldots\left|\sigma_{2}\right\rangle\left|\sigma_{1}\right\rangle\right\}, \quad$ the Hamiltonian can be expressed as
$H^{\vec{\sigma}^{\prime}} \vec{\sigma} \quad$ is a linear map acting on a direct product space: $\quad \mathbb{V} \otimes \mathcal{L}:=\mathbb{V}_{1} \otimes \mathbb{V}_{2} \otimes \ldots \otimes \mathbb{V}_{\mathcal{L}}$
where $V_{l}$ is the 2-dimensional representation space of site $l$.
$\hat{H}^{\mathcal{L}}$ is a sum of single-site and two-site terms.
On-site terms:

$$
\begin{equation*}
\hat{S}_{a l}=\left|\sigma_{l}^{\prime}\right\rangle\left(S_{a}\right)^{\sigma_{l}} \sigma_{l}\left\langle\sigma_{l}\right| \tag{6}
\end{equation*}
$$

Matrix representation in $\left.V_{l}: \quad\left(S_{a}\right)^{\sigma_{l}^{\prime}} \sigma_{l}=\left.\left\langle\sigma_{l}^{\prime}\right| \hat{S}_{a l}\right|_{\sigma_{l}}\right\rangle=\left(\begin{array}{ll}\left(S_{a}\right)_{\uparrow}^{\uparrow} & \left(S_{a}\right)_{\downarrow}^{\uparrow} \\ \left(S_{a}\right)_{\uparrow}^{\downarrow} & \left(S_{a}\right)_{\downarrow}^{\downarrow}\end{array}\right)$

$$
S_{+}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1  \tag{8}\\
0 & 0
\end{array}\right), \quad S_{-}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad S_{z}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Nearest-neighbor interactions, acting on direct product space, $\left|\sigma_{l}\right\rangle \otimes\left|\sigma_{l-1}\right\rangle$ :

$$
\begin{align*}
& \left.\hat{S}_{l}^{t_{a}} \otimes \hat{S}_{a l-1}=\sigma_{l}^{\prime}\right\rangle\left|\sigma_{l-1}^{\prime}\right\rangle \underbrace{\left(S_{a}\right)_{\sigma_{l-1}}^{\sigma_{l-1}^{\prime}}}_{!!} \underbrace{\left.S^{\dagger}+\right)_{l}^{\sigma_{l}^{\prime}} \sigma_{l}^{\prime}}_{!!}\left\langle_{l-1}\right| L_{\sigma_{l}} \mid  \tag{9}\\
& \text { Matrix representation in } V_{l-1} \otimes V_{l}: \quad \ddot{S}^{\sigma_{l-1}^{\prime}}{ }_{a}^{\sigma_{l-1}}{ }^{\prime \prime} \sigma_{l}^{\prime} a \sigma_{l}
\end{align*}
$$

Wee define the 3-len tensors $\ll$ with index nlacemente matching thence of $A$ tensors for wavefiınctinnc.

We define the 3-leg tensors $S, S_{\text {with index placements matching those of } A \text { tensors for wavefunctions: }}^{+}$ incoming upstairs, outgoing downstairs (fly in, roll out), with a (by convention) as middle index.

## Diagonalize site 1

Matrix acting on $v_{1}$ :
site index: $\ell=1$

$D_{1}=U_{1}^{\dagger} H_{1} U_{1}$ is diagonal, with matrix elements
$\left(D_{1}\right)^{\alpha^{\prime}} \alpha^{\prime}=\left(U_{1}^{\dagger}\right)^{\alpha^{\prime}}\left(H_{1}\right)^{\sigma_{1}^{\prime}}\left(U_{1}\right)^{\sigma_{1}} \alpha$

Eigenvectors of the matrix $H_{1} \quad$ are given by column vectors of the matrix $\left(U_{1}\right)^{\sigma_{1}} \alpha \quad$ :
Eigenstates of operator $\hat{H}_{1}$ are given by: $|\alpha\rangle=\left|\sigma_{1}\right\rangle\left(U_{1}\right)_{\alpha}^{\sigma_{1}}$

$$
\begin{equation*}
\underset{\left\{_{\sigma_{1}}\right.}{u_{1}} \alpha \tag{13}
\end{equation*}
$$

Add site 2
Diagonalize $H_{2}$ in enlarged Hilbert space, $\quad \mathscr{l}_{(2]}=\operatorname{span}\left\{\left|\sigma_{2}\right\rangle\left|\sigma_{1}\right\rangle\right\}$ chain of length 2

Matrix
acting on $V_{1} \otimes V_{2}$ :

$$
\begin{equation*}
H_{2}=\underbrace{\stackrel{\rightharpoonup}{S}_{1} \cdot \vec{h}_{1}}_{H_{1}^{\text {loo }}} \otimes \mathbb{1}_{2}+\mathbb{1}_{1} \otimes \underbrace{\vec{S}_{2} \vec{h}_{2}}_{H_{2}^{\text {loo }}}+\underbrace{J S_{a_{1}} S_{2}^{\dagger_{a}}}_{H_{12}^{\text {bloc }}} \tag{14}
\end{equation*}
$$

Matrix representation in $U_{1} \otimes v_{2}$ corresponding to 'local' basis, $\left\{\left|\sigma_{2}\right\rangle\left|\sigma_{1}\right\rangle\right\}$ :


We seek matrix representation in $V_{1} \otimes V_{2}$ corresponding to enlarged, 'site-1-diagonal' basis, defined as

$$
\begin{aligned}
& |\tilde{\alpha}\rangle \equiv\left|\alpha \sigma_{2}\right\rangle \equiv\left|\sigma_{2}\right\rangle|\alpha\rangle=\left|\sigma_{2}\right\rangle\left|\sigma_{1}\right\rangle U_{\alpha}^{\sigma_{1}} \\
& \hat{H}_{2}=\left|\tilde{\alpha}^{\prime}\right\rangle H_{2}^{\tilde{\alpha}_{2}^{\prime}} \tilde{\alpha}\langle\tilde{\alpha}|, \quad H_{2}^{\tilde{\alpha}^{\prime}}=\left\langle\tilde{\alpha}^{\prime}\right| \hat{H}_{2}\left|\tilde{\alpha}_{\alpha}\right\rangle=\left\langle\tilde{\alpha}^{\prime} \mid \sigma_{1}^{\prime} \sigma_{2}^{\prime}\right\rangle H_{2}^{\sigma_{1}^{\prime} \sigma_{2}^{\prime}} \sigma_{1} \sigma_{2}\left\langle\sigma_{1} \sigma_{2} \mid \tilde{\alpha}\right\rangle
\end{aligned}
$$

To this end, attach $U_{1}^{\dagger}, U_{1}$ to in/out legs of site 1, and $\mathbb{1}, \mathbb{1}$ to in/out legs of site 2 :

$$
\approx \quad U_{1} \propto \mathbb{1} \approx U_{1} \propto \mathbb{1} \approx U_{1} \propto \mathbb{1}
$$




Now diagonalize $\quad H_{2}$ in this enlarged basis: $\quad H_{2}=U_{2} D_{2} U_{2}^{f}$
$D_{2}=U_{2}^{\dagger} H_{2} U_{2}$ is diagonal, with matrix elements
$D_{2}^{\beta^{\prime}}=\left(u_{2}^{+}\right)_{\tilde{\alpha}^{\prime}}^{\beta^{\prime}}\left(H_{2}\right)^{\hat{\alpha}^{\prime}}\left(u_{2}\right)^{\hat{\alpha}}$


Eigenvectors of matrix $H_{2}$ are given by column vectors of the matrix $\left(u_{2}\right)_{\beta}^{\tilde{\alpha}_{\beta}}=\left(u_{2}\right)^{\alpha \sigma_{2}}$ : Eigenstates of the operator $\hat{H}_{2}$ :

$$
\begin{align*}
& |\beta\rangle=|\tilde{\alpha}\rangle\left(U_{2}\right)^{\tilde{\alpha}}=\left|\sigma_{2}\right\rangle|\alpha\rangle\left(U_{2}\right)^{\alpha \sigma_{2}} \beta=\left|\sigma_{2}\right\rangle\left|\sigma_{1}\right\rangle\left(u_{1}\right)_{\alpha}^{\sigma_{1}}\left(u_{2}\right)^{\alpha \sigma_{2}} \beta \tag{21}
\end{align*}
$$

## Add site 3

Transform each term involving new site into the 'enlarged, site-12-diagonal basis', defined as

$$
\begin{equation*}
|\tilde{\beta}\rangle \equiv\left|\beta \sigma_{3}\right\rangle \equiv\left|\sigma_{3}\right\rangle|\beta\rangle \quad \beta \rightarrow \underset{\substack{1 \\ \sigma_{3}}}{\mathbb{1}} \tilde{\beta}=\times \frac{u_{1} u_{\sigma_{1}}^{u_{\sigma_{2}}} \underset{\sigma_{2}}{\underset{\sigma}{1}} \underset{\sigma_{3}}{1}}{\tilde{\beta}} \tag{23}
\end{equation*}
$$

For example, spin-spin interaction, $H_{32}^{\text {int }}$ :

Local basis:

enlarged, site-12-diagonal basis:


Then diagonalize in this basis: $\quad H_{3}=U_{3} D_{3} U_{3}^{\dagger}$, etc.
At each iteration, Hilbert space grows by a factor of 2. Eventually, trunctations will be needed...!

Consider tight-binding chain of spinless fermions:


$$
\begin{equation*}
\hat{H}=\sum_{l=1}^{\mathcal{L}} \varepsilon_{l} \hat{C}_{l}^{\dagger} \hat{C}_{l}+\sum_{l=2}^{\ell} t_{l}\left(\hat{c}_{l}^{t} \hat{C}_{l-1}+\hat{c}_{l-1}^{t} \hat{c}_{l}\right) \tag{I}
\end{equation*}
$$

Goal: find matrix representation for this Hamiltonian, acting in direct product space $V_{1} \otimes V_{2} \otimes \ldots \otimes V_{\mathcal{L}}$, while respecting fermionic minus signs:

$$
\begin{equation*}
\left\{\hat{C}_{l}, \hat{C}_{l^{\prime}}\right\}=0, \quad\left\{\hat{C}_{l}^{+}, \hat{C}_{\ell^{\prime}}^{+}\right\}=0, \quad\left\{\hat{C}_{l}^{\dagger}, \hat{c}_{\ell^{\prime}}\right\}=\delta_{\ell l^{\prime}} \tag{2}
\end{equation*}
$$

First consider a single site (dropping the site index $\ell$ ):
Hilbert space: $\operatorname{span}\{|0\rangle,|1\rangle\}$, local index:

$$
\checkmark \text { local occupancy }
$$

$$
n=\sigma \in\{0,1\}
$$

Operator action:

$$
\begin{array}{ll}
\hat{c}^{\dagger}|0\rangle=|1\rangle, & \hat{c}^{t}|1\rangle=0 \\
\hat{c}|0\rangle=0, & \hat{c}|1\rangle=|0\rangle \tag{3b}
\end{array}
$$

The operators $\quad \hat{c}^{\dagger}=\left|\sigma^{\prime}\right\rangle C^{\dagger} \sigma_{\sigma}^{\prime}\langle\sigma| \quad$ and $\quad \hat{c}=\left|\sigma^{\prime}\right\rangle C_{\sigma}^{\sigma^{\prime}}\langle\sigma|$
have matrix representations in $V: \quad C^{\dagger \sigma^{\prime}}=\left\langle\sigma^{\prime}\right| \hat{c} \hat{c}^{\dagger}|\sigma\rangle=\left\langle\begin{array}{l}\langle 11\end{array}\left(\begin{array}{cc}10\rangle \\ 0 & 0 \\ 1 & 0\end{array}\right) \quad c^{\dagger} 巾_{\sigma^{\prime}}^{\sigma} \quad\right.$ (ha)

$$
C^{\sigma^{\prime}} \sigma=\left\langle\sigma^{\prime}\right| \hat{c}|\sigma\rangle=\left(\begin{array}{ll}
0 & 1  \tag{cb}\\
0 & 0
\end{array}\right) \quad c{ }^{\alpha_{\sigma^{\prime}}}
$$


Check: $C^{t} C+C C^{+}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)+\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\mathbb{1} v$

$$
C^{+} C^{\dagger}=\left(\begin{array}{ll}
0 & 0  \tag{5}\\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \quad, \quad C=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \checkmark
$$

For the number operator, $\hat{n}:=\hat{C}^{\dagger} \hat{c} \quad$ the matrix representation in $V$ reads:

$$
n:=C^{+} C=\left(\begin{array}{ll}
0 & 0  \tag{7}\\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\frac{1}{2}(1-z)
$$

where $Z:=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad$ is representation of $\quad \hat{z}=1-2 \hat{u}=(-1)^{\hat{n}}$

Useful relations:

$$
\begin{equation*}
\hat{c} \hat{z}=-\hat{z} \hat{c}, \quad \hat{c}^{+} \hat{z}=-\hat{z} \hat{c}^{+} \tag{8}
\end{equation*}
$$

'commuting $\hat{C}$ or $\hat{C}^{+}$past $\hat{Z}$ produces a sign'

Intuitive reason: $\hat{c}$ and $\hat{c}^{+}$both change $\hat{n}$-eigenvalue by one, hence change sign of $(-1)^{\hat{n}}$.
For example: $\sim_{\text {non-zero only when acting on }|0\rangle}^{\hat{c}^{+}} \underbrace{(-1)^{\hat{n}}}_{=(-1)^{0}=1}=\hat{c}^{+}=-\underbrace{(-1)^{\hat{n}}}_{=(-1)^{\prime}} \hat{c}^{n^{+}}=-1$

Similarly:

$$
\begin{equation*}
\boldsymbol{T}_{\mathrm{n}|1\rangle}^{\hat{C}(-1)^{(-1)^{\prime}}=-\hat{C}=-1}=-\underbrace{(-1)^{\hat{n}}}_{=(-1)^{0}} \hat{C} \tag{10b}
\end{equation*}
$$

non-zero only when acting on $|1\rangle$
Now consider a chain of spinless fermions:
Complication: fermionic operators on different sites anticommute: $\quad c_{\ell} c_{\ell^{\prime}}^{+}=-c_{\ell^{\prime} C_{\ell}}^{+}$for $\ell \neq \ell^{\prime}$
Hilbert space: $\quad \operatorname{span}\left\{|\vec{\sigma}\rangle_{2}=\left|n_{1}, n_{2}, \ldots, n_{\mathscr{2}}\right\rangle\right\} \quad, \quad n_{i} \in\{0,1\}$

Define canonical ordering for fully filled state:

$$
\begin{equation*}
\left|n_{1}=1, n_{2}=1, \ldots, n_{2}=1\right\rangle=c_{2}^{+} \ldots c_{1}^{+} c_{1}^{t}\left|V_{a c}\right\rangle \tag{12}
\end{equation*}
$$

Now consider:

$$
\begin{equation*}
\hat{c}_{1}^{t}\left|n_{1}=0, n_{2}=1\right\rangle=\hat{C}_{1}^{t} \hat{C}_{2}^{t}\left|V_{a c}\right\rangle=-\hat{C}_{2}^{\dagger} \hat{C}_{1}^{t}\left|V_{a c}\right\rangle=-\left|n_{1}=1, n_{2}=1\right\rangle \tag{13}
\end{equation*}
$$

To keep track of such signs, matrix representations in $V_{1} \otimes V_{2}$ need extra 'sign counters', tracking fermion numbers:

$$
\begin{equation*}
\hat{c}_{1}^{t} \doteq C_{1}^{t} \otimes(-1)^{n_{2}}=C_{1}^{t} \otimes Z_{2} \tag{14}
\end{equation*}
$$

$$
c_{1}^{+} \phi \quad z_{2} \hat{\alpha}
$$

$$
\begin{equation*}
\hat{C}_{2}^{+} \doteq \mathbb{1}_{1} \otimes C_{2}^{\dagger}=: C_{2}^{\dagger} \quad \text { (shorthand: omit unity) } \tag{15}
\end{equation*}
$$

$$
\mathbb{1}_{1}{ }_{i}^{1} \quad c_{2}^{+}{ }_{2}^{2}
$$

Here $\otimes$ denotes a direct product operation; the order (space 1 , space $2, \ldots$ ) matches that of the indices on the corresponding tensors: $A^{6,62} \ldots$

Check whether

$$
\begin{align*}
& \hat{C}_{1}^{\dagger} \hat{C}_{2}^{\dagger}=-\hat{C}_{2}^{\dagger} \hat{C}_{1}^{\dagger} ? \tag{16}
\end{align*}
$$

Algebraically:
a+ al 1
(14) $t$
6

Algebraically:

$$
\begin{align*}
\hat{C}_{1}^{\dagger} \hat{C}_{2}^{\dagger} & =\left(C_{1}^{\dagger} \otimes Z_{2}\right)\left(\mathbb{1}_{1} \otimes C_{2}^{\dagger}\right) \stackrel{(14)}{=} C_{1}^{+} \mathbb{1}_{1} \otimes\left(Z_{2} C_{2}^{\dagger}\right) \stackrel{(9)}{=}-\mathbb{1}_{1} C_{1}^{t} \otimes C_{2}^{\dagger} Z_{2}  \tag{18}\\
& =-\left(\mathbb{1}_{1} \otimes C_{2}^{\dagger}\right)\left(C_{1}^{\dagger} \otimes Z_{2}\right) \stackrel{c_{2}}{=} \hat{C}_{2}^{\dagger} \tag{19}
\end{align*}
$$

Similarly:

More generally: each $\hat{c}_{\ell}$ or $\hat{C}_{\ell}^{\dagger}$ must produce sign change when moved past any $\hat{c}_{\ell^{\prime}}$ or $\hat{C}_{\ell^{\prime}}^{\dagger}$, with $\ell^{\prime}>\ell$. So, define the following matrix representations in $V^{\otimes \mathcal{L}}=V_{1} \otimes V_{2} \otimes \ldots \otimes V_{\mathcal{L}}$ :

$$
\begin{align*}
& \hat{C}_{l}^{\dagger} \doteq \mathbb{1}_{1} \otimes \ldots \mathbb{1}_{l-1} \otimes C_{l}^{\dagger} \otimes Z_{l+1} \otimes \ldots z_{l}=: C_{l}^{+} Z_{l}^{\prime} \\
& \hat{C}_{l} \doteq \mathbb{1}_{1} \otimes \ldots \mathbb{1}_{l-1} \otimes C_{l \otimes}^{\otimes} Z_{l+1} \otimes \ldots z_{l}=: C_{l} Z_{l}^{\prime} \text { 'Jo }  \tag{22}\\
& \text { with }  \tag{23}\\
& \mathbb{Z}_{l}^{>}:=\prod_{\otimes \ell l^{\prime}>l} Z_{l}^{\prime}
\end{align*}
$$

'Jordan-Wigner transformation'

Exercise: verify graphically that $\quad \hat{C}_{\ell}^{\prime} \hat{C}_{\ell}=-\hat{C}_{\ell} \hat{C}_{\ell^{\prime}}^{\dagger}$ for $\ell^{\prime}>\ell$.
Solution:

(24)


In bilinear combinations, all(!) of the $Z$ 's cancel. Example: hopping term, $\hat{c}_{\ell}^{\dagger} \hat{C}_{\ell-1}$ :


since at site $l$ we have $\quad Z_{l}^{Z} Z_{l}=I_{l,} \quad{ }_{\lambda} C_{l}^{\dagger} Z_{l}=C_{l}^{(10 a)} C_{l}^{+}, \quad 1281$ non-zero only when acting on $\left|\ldots, n_{\ell}=0, \ldots\right\rangle$, and in this subspace, $Z_{l}=1$
Conclusion: $\quad \hat{c}_{l}^{t} c_{l-1} \doteq C^{t} C_{l-1} \begin{gathered}\text { [using (10b)] }\end{gathered} \quad \hat{c}_{l-1}^{\dagger} \hat{c}_{l} \doteq C_{l-1}^{\dagger} C_{l}$
Hence, the hopping terms end up looking as though fermions carry no signs at all.
For spinful fermions, this will be different.

Consider chain of spinful fermions. Site index: $\ell=1, \ldots, \mathcal{L}$, spin index: $S \in\{\uparrow, \downarrow\}:=\{+,-\}$

$$
\begin{equation*}
\left\{\hat{C}_{l s}, \hat{C}_{l l^{\prime} s^{\prime}}\right\}=0, \quad\left\{\hat{C}_{l s}^{+}, \hat{C}_{l^{\prime} s^{\prime}}^{\dagger}\right\}=0, \quad\left\{\hat{C}_{l s}^{\dagger}, \hat{c}_{l l^{\prime} s^{\prime}}\right\}=\delta_{l l^{\prime}} \delta_{s s^{\prime}} \tag{I}
\end{equation*}
$$

Define canonical order for fully filled state:

$$
\begin{equation*}
\hat{C}_{N \downarrow}^{\dagger} \hat{C}_{N \uparrow}^{\dagger} \ldots \hat{C}_{2 \downarrow}^{\dagger} \hat{C}_{2 \uparrow}^{\dagger} \hat{C}_{1 \downarrow}^{\dagger} \hat{C}_{1 \uparrow}^{\dagger}|V a c\rangle \tag{2}
\end{equation*}
$$

First consider a single site (dropping the index $\ell$ ):

Hilbert space: $=\operatorname{span}\{|0\rangle,|\downarrow\rangle,|\uparrow\rangle,|\uparrow \downarrow\rangle\}$, local index: $\sigma \in\{0, \downarrow, \uparrow, \uparrow \downarrow\}$
constructed via: $|0\rangle \equiv\left|V_{\text {ac }}\right\rangle, \quad|\downarrow\rangle \equiv \hat{C}_{\downarrow}^{\dagger}|0\rangle$,

$$
\begin{equation*}
|\uparrow\rangle \equiv \hat{C}_{\uparrow}^{\dagger}|0\rangle, \quad|\uparrow \downarrow\rangle \equiv \hat{C}_{\downarrow}^{\dagger} C_{\uparrow}^{+}|0\rangle=\hat{C}_{\downarrow}^{+}|\uparrow\rangle=-\hat{C}_{\uparrow}^{+}|\downarrow\rangle \tag{4}
\end{equation*}
$$

To deal with minus signs, introduce $\hat{Z}_{S}:=(-1)^{\hat{n}_{S}}=\frac{1}{2}\left(1-\hat{n}_{S}\right) \quad S \in\{\uparrow, \downarrow\}$ $\hat{\sim} \hat{C}_{s} \hat{C}_{s}$

We seek a matrix representation of $\hat{C}_{s}^{\dagger}, \hat{C}_{s} \hat{Z}_{S}$ in direct product space $\tilde{V}_{:}=V_{\uparrow} \otimes V_{\downarrow}$. (Matrices acting in this space will carry tildes.)

$$
\begin{align*}
& \hat{z}_{\downarrow} \doteq \mathbb{1}_{r} \otimes Z_{\downarrow}=\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & \\
& -1
\end{array}\right)=\left(\begin{array}{lll}
1 & -1 \\
& & \\
& 1 & -1
\end{array}\right)=\hat{z}_{\downarrow}  \tag{9}\\
& \hat{Z}_{\uparrow} \hat{Z}_{\downarrow} \doteq Z_{\uparrow} \otimes Z_{\downarrow}=\left(\begin{array}{ll}
1 & \\
& -1
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & \\
& -1
\end{array}\right)=\left(\begin{array}{ll}
1 & -1 \\
& -1
\end{array}\right)=: \tilde{z}  \tag{10}\\
& \hat{C}_{\uparrow}^{\dagger} \equiv C_{\uparrow}^{\dagger} \otimes Z_{\downarrow}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & -1
\end{array}\right)=\binom{1}{1}=\tilde{C}_{\uparrow}^{\dagger} \\
& \hat{C}_{\uparrow} \doteq C_{\uparrow} \otimes Z_{\downarrow}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & -1
\end{array}\right)=\left(-\left.\right|^{1}-1\right)=\tilde{C}_{\uparrow}  \tag{II}\\
& \hat{C}_{\downarrow}^{\dagger} \doteq \mathbb{1}_{\uparrow} \otimes C_{\downarrow}^{\dagger}=\left(\begin{array}{ll}
1 & 1
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll|l}
0 & 0 & \\
1 & 0 & \\
\hline & 0 & 0 \\
1 & 0
\end{array}\right)=: \tilde{C}_{\downarrow}^{\dagger} \tag{12}
\end{align*}
$$

$$
\hat{c}_{b} \equiv 1_{r} \otimes c_{b}=\left(1,1 \otimes(100)=\left(\begin{array}{l}
0.0  \tag{12}\\
0 \\
0 \\
0
\end{array}\right)=\hat{c}_{1}\right.
$$

The factors $Z_{s}$ guarantee correct signs. For example $\tilde{C}_{\uparrow}^{\dagger} \tilde{C}_{\downarrow}=-\tilde{C}_{\downarrow} \tilde{C}_{\uparrow}^{\dagger}$ : (fully analogous to MPS-II.1.17)

Algebraic check:

$$
\begin{aligned}
& \left(\begin{array}{ll} 
& \\
\hline 1-1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & \\
0 & 0 & 1 \\
\hline & 0 & 1 \\
& 0 & 0
\end{array}\right)=\left(\begin{array}{ll} 
& \\
\hline 0 & 1 \\
0 & 0
\end{array}\right), \\
& \left(\begin{array}{lll}
0 & 1 & \\
0 & 0 & \\
\hline & 0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll} 
& \\
\hline 1 & -1
\end{array}\right)=\left(\begin{array}{cc} 
& \\
\hline 0 & -1 \\
0 & 0
\end{array}\right) \checkmark(14)
\end{aligned}
$$

Remark: for spinful fermions (in contrast to spinless fermions, compare MPS-II.28), we have

$$
\begin{equation*}
\tilde{C}_{S}^{\dagger} \tilde{Z} \neq \tilde{C}_{s}^{\dagger} \quad \text { and } \quad \tilde{Z} \tilde{C}_{s} \neq \tilde{C}_{s} \tag{15}
\end{equation*}
$$

For example, consider $S=\uparrow$; action in $V_{\uparrow} \otimes V_{\downarrow}$ :

Now consider a chain of spinful fermions (analogous to spinless case, with $\widetilde{V}_{\ell}$ instead of $V_{\ell}$ ).
Each $\hat{C}_{l}$ or $\hat{C}_{l}^{\dagger}$ must produce sign change when moved past any $\hat{c}_{\ell^{\prime}}$ or $\hat{C}_{\ell^{\prime}}^{+}$, with $\ell^{\prime}>\ell$.
So, define the following matrix representations in $\quad \tilde{V}^{\otimes N}=\widetilde{V}_{1} \otimes \widetilde{V}_{2} \otimes \ldots \otimes \widetilde{V}_{\mathcal{L}}$ :

$$
\begin{align*}
\hat{C}_{l}^{\dagger} & \doteq \tilde{\mathbb{1}}_{1} \otimes \ldots \tilde{\mathbb{1}}_{l-1} \otimes \tilde{C}_{l}^{\dagger} \otimes \tilde{z}_{l+1} \otimes \ldots \tilde{z}_{\mathcal{L}} \equiv \tilde{C}_{l}^{\dagger} \tilde{z}_{l}^{>} \\
\hat{C}_{l} & \doteq \tilde{\mathbb{1}}_{1} \otimes \ldots \tilde{\mathbb{1}}_{l-1} \otimes \tilde{C}_{l} \otimes \tilde{z}_{l+1} \otimes \ldots \tilde{z}_{\mathcal{L}} \equiv \tilde{C}_{l} \tilde{z}_{l}^{>} \tag{18}
\end{align*}
$$

'Jordan-Wigner transformation' with $\quad \tilde{Z}_{\ell}^{>} \equiv \prod_{\otimes \otimes \ell^{\prime}>\ell} \tilde{Z}_{\ell^{\prime}}=\prod_{\otimes \ell^{\prime}>\ell} Z_{\uparrow \ell^{\prime} \otimes} \otimes Z_{\downarrow \ell^{\prime}} \quad \quad$ 'Z-string'

In bilinear combinations, most (but not all!) of the $Z$ 's cancel.
Example: hopping term $\hat{C}_{\ell s}^{\dagger} \hat{C}_{\ell-1 s}$ : (sum over s implied)



Similarly: $\hat{c}_{\text {l-1s }} \hat{C}_{\ell s}=$


Bond $\rightarrow$ indicates sum $\sum_{5}$ Convention: annihilation: outgoing -1 or incoming +1
Creation: outgoing +1 or incoming -1

