Consider an operator acting on N -site chain:
$\hat{O}=\left|\vec{\sigma}^{\prime}\right\rangle O_{\vec{\sigma}}^{\vec{\sigma}}\langle\vec{\sigma}|$
It can always be written as
'matrix product operator' (MPO),

$$
\begin{aligned}
\hat{\sigma} & =\left|\vec{\sigma}^{\prime}\right\rangle W^{\prime \sigma_{1}^{\prime}}{ }_{\mu \sigma_{1}} W^{\mu \sigma_{2}^{\prime}}{ }_{\nu \sigma_{2}}^{\nu} \ldots W^{\lambda \sigma_{N}{ }^{\prime} \sigma_{N}\langle\vec{\sigma}|} \\
& \equiv\left|\vec{\sigma}^{\prime}\right\rangle \prod_{l} W^{\sigma_{l}^{\prime}} \sigma_{l}\langle\vec{\sigma}|
\end{aligned}
$$

using a sequence of QR decompositions:
(1)

(2)

$$
\sigma_{1}^{\prime} \quad \sigma_{2}^{\prime} \quad \cdots \quad \sigma_{l}^{\prime} \cdots \cdots \sigma_{z}^{\prime}
$$

In general, this produces MPO with growing bond dimensions:
reshape as matrix with composite indices
$=:\left(\sigma_{1}^{\prime}, \sigma_{1}\right) \rightarrow\left(\vec{\sigma}_{21}^{\prime}, \bar{\sigma}_{21}\right)$
QR decomposition
$=\left(\sigma_{1}^{\prime}, \sigma_{1}\right) \rightarrow \underset{\mu}{Q} \xrightarrow{Q} \xrightarrow{R}\left(\vec{\sigma}_{21}^{\prime}, \bar{\sigma}_{21}\right)$
reshape again $=$

$$
\begin{equation*}
d^{2},\left(d^{2}\right)^{2},\left(d^{2}\right)^{3}, \cdots \tag{4}
\end{equation*}
$$

But for short-ranged Hamiltonians, bond dimension is typically very small, $\theta(1)$.

1. Applying MPO to MPS yields MPS $\left|\psi^{\prime}\right\rangle=\hat{O}|\psi\rangle$

$|\psi\rangle=|\overrightarrow{0}\rangle \prod_{\ell} M_{[\ell]}^{\alpha_{l} \sigma_{l} \beta_{l}}$
(7) $\quad\left|\psi^{\prime}\right\rangle=\hat{o}|\psi\rangle=\left|\bar{\sigma}^{\prime}\right\rangle \prod_{l} M_{[l]}^{\prime} \alpha_{l}^{\prime} \sigma_{l}^{\prime} \beta_{l}^{\prime}$

$\begin{array}{ll} & \alpha_{l}^{\prime}=(\alpha, \mu) \\ \text { with composite indices, } & \beta_{B}^{\prime}=(\beta, \nu)\end{array}$,
of increased dimension

$$
\begin{equation*}
\tilde{D}_{M^{\prime}}=D_{W} \cdot D_{M} \tag{10}
\end{equation*}
$$

In practice, application of MPO is usually followed by SVD+truncation, to 'bring bond dimension back down':

$$
\begin{equation*}
w \tilde{w}=\tilde{w} \tag{in}
\end{equation*}
$$

$\widehat{W}_{\nu^{\prime} \sigma}^{\mu^{\prime} \sigma^{\prime}}=W_{\nu \bar{\sigma} \sigma^{\prime}}^{W^{\mu} \bar{\sigma}} \bar{\nu} \sigma$

 In practice, such a multiplication is typically followed by SVD+truncation.

Addition of MPOs
$\hat{0}+\hat{\tilde{O}}$
Let $\hat{o}=|\vec{\sigma}\rangle \prod_{l} W^{\sigma_{b c}^{\prime}}\langle\vec{\sigma}| \quad \hat{\tilde{o}}=\left|\sigma^{\prime}\right\rangle \prod_{t} \tilde{W}_{\sigma_{c}^{\prime}}\langle\vec{\sigma}|$
$\hat{0}+\hat{\tilde{o}}=\left|\vec{\sigma}^{\prime}\right\rangle[w \omega \ldots w+\tilde{\omega} \ldots \ldots \underset{\omega}{\omega}]<\vec{\sigma} \mid$
$=\left|\vec{\sigma}^{\prime}\right\rangle \operatorname{Tr}_{r}\left(\begin{array}{ll}\omega & \\ & \tilde{\omega}\end{array}\right)\left(\begin{array}{lll}\omega & \\ & \hat{\omega}\end{array}\right) \ldots\left(\begin{array}{cc}\omega & \\ & \tilde{\omega}\end{array}\right)\langle\vec{\sigma}|=$ MPO in enlarged space

Sum of single-site operators

Let $\hat{O}=\sum_{l} \hat{\theta}_{[l]} \quad$ with single-site operators

$$
\hat{\theta}_{\{e]}^{(\text {MPS-I.1.22) }}=\left\lvert\, \begin{gather*}
0 \tag{18}\\
101 \uparrow
\end{gather*} \uparrow\right.
$$

MPO representation:

$$
=\left(\begin{array}{ll}
0 & 1
\end{array}\right) \prod_{l=1}^{N} \hat{W}_{[l]}\binom{1}{0}, \quad \hat{W}_{[l]}=\left(\begin{array}{ll}
\hat{1}_{l l]} & 0 \\
\hat{O}_{[l]} & \hat{1}_{[l]}
\end{array}\right) \rightarrow t, t, t, t,+
$$

(19)

Check for $\mathrm{N}=2$:

$$
\begin{align*}
& =\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
\hat{\mathbb{1}}_{(1]} & 0 \\
\hat{O}_{[1]} & \hat{\mathbb{1}}_{(1)}
\end{array}\right)\left(\begin{array}{ll}
\hat{\mathbb{1}}_{(21} & 0 \\
\hat{O}_{[2]} & \hat{\mathbb{1}}_{(2]}
\end{array}\right)\binom{1}{0} \tag{20}\\
& =\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\hat{\mathbb{1}}_{(1)} \otimes \hat{\mathbb{1}}_{[2]} \\
\hat{O}_{[1]} \otimes \hat{\mathbb{1}}_{[2]}+\hat{\mathbb{1}}_{[1]} \otimes \hat{O}_{(2)} & \hat{\mathbb{1}}_{[1]}^{\otimes \otimes \hat{\mathbb{I}}_{(2]}}
\end{array}\right)\binom{1}{0}=\hat{O}_{[1]} \otimes \hat{\mathbb{1}}_{[2]}+\hat{\mathbb{1}}_{(1)} \otimes \hat{O}_{(2)} \tag{21}
\end{align*}
$$

Matrix elements of W have direct-product structure:

$$
W_{(l]}^{\mu \sigma_{l}^{\prime}} \nu_{\sigma_{l}}=\left(\begin{array}{ll}
\left(\hat{1}_{(l)}^{1}\right)_{\sigma_{l}}^{\sigma_{l}^{\prime}} & 0 \tag{22}\\
\left(\hat{O}_{[l]}\right)_{\sigma_{l}}^{\sigma_{l}^{\prime}} & \hat{1}_{[l]}^{\sigma_{l}^{\prime}} \sigma_{l}
\end{array}\right)^{\mu}
$$

$$
\hat{H}=\sum_{l=1}^{\mathcal{L}}[\overbrace{J \hat{S}_{l}^{z} \hat{S}_{l+1}^{z}+\frac{1}{2} J \hat{S}_{\ell}^{t} \hat{S}_{l+1}+\frac{1}{2} J \hat{S}_{l}-\hat{S}_{l+1}^{t}}^{\hat{H}_{\ell, l+1}}-\sum_{l=1}^{\mathcal{L}} \overbrace{\ell}^{\hat{S}_{\ell}} \hat{H}_{\ell}^{z}
$$

is shorthand for $=J^{z} \hat{S}_{1}^{z} \times \hat{S}_{2}^{z} \otimes \hat{1} \otimes \ldots \hat{I}$

$$
+J^{z} \mathbb{1}_{1}\left(x \hat{S}_{2}^{z} \otimes \hat{S}_{3}^{z} x \ldots(x \hat{1} \quad+\ldots\right.
$$

Contains sum of one- and two-site operators. How can we bring this into the form of an MPO?
Solution: introduced operator-valued matrices, whose product reproduces the above form!

$$
\begin{aligned}
\hat{H} & =\left|\overrightarrow{\sigma^{\prime}}\right\rangle H^{\vec{\sigma}_{l}^{\prime}} \vec{\sigma}_{l}\langle\vec{\sigma}|=: \prod_{\ell} \hat{W}_{l \ell]} \quad=\text { matrix product of one-site operators } \\
& =:\left(\hat{W}_{[1]}\right)_{\mu}^{\prime}\left(\hat{W}_{[2]}\right)^{\mu} \otimes \ldots \otimes\left(\hat{W}_{[N]}\right)^{\eta}, \\
& =:\left(\left|\sigma_{1}^{\prime}\right\rangle W_{[1]}^{\mid \sigma_{1}!} \mu_{\mu \sigma_{1}}\left\langle\sigma_{1}\right|\right) \otimes\left(\left|\sigma_{2}^{\prime}\right\rangle W_{[2]}^{\mu]_{2}^{\prime}} \nu \sigma_{2}\left\langle\sigma_{2}\right|\right) \otimes \ldots \otimes\left(\left|\sigma_{N}^{\prime}\right\rangle W_{[N]}^{\left.\eta \sigma_{N}^{\prime} \mid \sigma_{N}\left\langle\sigma_{N}\right|\right)}\right.
\end{aligned}
$$

Each $\hat{W}_{[\ell]}$ acts only on site ℓ; their matrix product gives the full MPO.

$$
W_{[e]^{\sigma_{l}^{\prime}} \sigma_{\ell}}
$$

Viewed from any given bond, the string of operators in each term of \hat{H} can be in one of 5 'states':
 Build matrix whose element $i j$ implements 'transition' from 'state' j to i on its left:

Site $\mathcal{L}:{ }_{¡} \hat{W}_{[\mathcal{L}]}=$
column vector

$$
\left(\begin{array}{c|c}
\hat{1} \\
\hat{S}^{+} & 2 \\
\hat{S}^{2} & 3 \\
\hat{S}^{z} & 4 \\
-h S_{t} & \\
\text { first column of } & \\
& W_{[\ell]}
\end{array}\right.
$$

Key properties:

$$
\hat{W}_{[1]_{\mu}^{1} \hat{W}_{[2]_{1}}^{\mu}=\hat{H}_{1} \otimes \mathbb{1}_{2}+\hat{H}_{12}+1_{1} \otimes \hat{H}_{2}}
$$

$$
\begin{aligned}
& \hat{W}_{[\mathcal{L}-1]}^{1} \hat{W}_{\mu}^{\mu}[\mathcal{L}]_{1}^{\mu}=\hat{H}_{\mathcal{L}-1}^{\otimes \mathbb{1}_{L}}+\hat{H}_{L-1, \mathcal{L}}+\mathbb{1}_{L_{-1}^{*}}^{\otimes H_{\mathcal{L}}} \\
& \hat{W}_{[l]_{\mu}}^{1} \hat{W}_{[l+1]_{1}}^{\mu}=\hat{H}_{l \otimes \mathbb{1}_{l+1}}+\hat{H}_{l, l+1}+\mathbb{1}_{l}^{\otimes} \hat{H}_{l+1}
\end{aligned}
$$

Check: multiplying out a product of such $\hat{W}_{[\mathcal{L}]}$'s yields desired result:
$\hat{\omega}_{[1]} \hat{\omega}_{[2]} \hat{\omega}_{[3]} \hat{\omega}_{[4]}=$

elements 1,2 and 1,3 and 1,4, couple to

$$
\begin{aligned}
& \underbrace{\mathbb{1} \frac{J}{2} \hat{S}^{-} \quad 1 \otimes \frac{I}{2} \hat{S}^{1}+\mathbb{1} \otimes T^{2} \hat{S}^{z}}+\mathbb{1} \otimes \mathbb{I}
\end{aligned}
$$

element 5,1 contains the full Hamiltonian for sites 2 and 3, excluding terms involving sites 1 and 4.
elements 5,2 and 5,3 and 5,4 couple to(site 4) building the interaction between sites 3 and 4

$$
\left[\begin{array}{l}
\hat{1} \\
\hat{s}^{+} \\
\hat{s}- \\
\hat{s}^{z} \\
-h s_{z}
\end{array}\right]
$$

$=\left[-h S^{z}\left(x \mathbb{1} \otimes \mathbb{1}+\frac{J}{2} \hat{S}^{-} \otimes \hat{S}^{4}\left(\otimes \mathbb{1}+\frac{J}{2} \hat{S}^{h} \otimes \hat{S}^{-} \otimes \mathbb{1}+J^{z} S^{z} \otimes S^{2} \otimes \mathbb{1}\right](\mathbb{1} 1\right.\right.$
$+L\left(\theta\left(-h \hat{S}^{z}\right) \theta \mathbb{L}+\frac{J}{2} \hat{S}^{-} \theta \hat{S}^{t}+\frac{J}{2} S^{t} \otimes \hat{S}^{-}+J^{z} \hat{S}^{z} \theta \hat{S}^{z}+I \otimes\left(-h \hat{S}^{z}\right)\right)$ (1) \mathbb{I}
$+\mathbb{1} \otimes\left[1 \otimes \frac{I}{2} \hat{S}^{-} \otimes \hat{S}^{t}+1 \otimes \frac{J}{2} \hat{S}^{t} \otimes \hat{S}^{-}+1 \otimes J^{z} \hat{S}^{t} \otimes \hat{S}^{z}+\| \times 1 \otimes\left(-h \hat{S}_{z}^{z}\right)\right]$

$$
\begin{aligned}
& +\mathbb{L}\left(\left(-h \hat{S}^{z}\right) \otimes \mathbb{1}+\frac{J}{2} \hat{S}^{-} \oplus \hat{S}^{t}+\frac{J}{2} \hat{S}^{\dagger} \otimes \hat{S}^{-}+J^{z} \hat{S}^{z} \otimes \hat{S}^{z}+I \otimes\left(-h \hat{S}^{z}\right)\right)(\mathbb{1} \\
& +\mathbb{1} \otimes\left[1(1) \frac{J}{2} \hat{S}^{-} \otimes \hat{S}^{t}+\mathbb{1} \otimes \frac{J}{2} \hat{S}^{+} \otimes \hat{S}^{-}+1 \otimes J^{z} \hat{S}^{t} \otimes \hat{S}^{z}+\mathbb{1} \times \mathbb{1} \otimes\left(-h \hat{S}_{z}^{z}\right)\right] \\
& =\text { full Hamiltonian for } 4 \text { sites! }
\end{aligned}
$$

Longer-ranged interactions

$$
\hat{H}=J_{1} \sum_{l} \hat{S}_{l}^{z} \hat{S}_{l+1}^{z}+J_{2} \sum_{l} \hat{S}_{l}^{z} \hat{S}_{l+2}^{z}
$$

state 1 : only $\mathbb{1}$ to the right state 2 : one \hat{S}^{z} just to the right state 3: one $\hat{\mathbb{1}}\left(\underset{大}{ } \hat{S}^{z}\right.$ just to the right state 4: completed interaction somewhere to the right

Check:

$$
\begin{aligned}
& \hat{\omega}^{[r]} \hat{W}^{[2]} W^{[3]}=\hat{W}^{(1)}\left(\begin{array}{cccc}
\hat{\mathbb{1}} & 0 & 0 & 0 \\
\hat{S}^{z} & 0 & 0 & 0 \\
0 & \hat{\mathbb{1}} & 0 & 0 \\
0 & J_{1} \hat{s}^{z} & J_{2} \hat{S}^{z} & \hat{\mathbb{1}}
\end{array}\right]\left(\begin{array}{l}
\hat{\mathbb{1}} \\
\hat{S}^{z} \\
0 \\
0
\end{array}\right) \\
& =\left(0, J_{1} \hat{S}^{z}, J_{2} \hat{S}^{z}, \hat{\mathbb{I}}\right)\left(\begin{array}{l}
\hat{\mathbb{I}} \otimes \hat{\mathbb{I}} \\
\hat{S}_{z} \otimes \hat{\mathbb{I}} \\
\hat{\mathbb{1}} \otimes \hat{S}^{z} \\
0+J_{1} \hat{S}^{z} \otimes \hat{S}^{z}+0+0
\end{array}\right)
\end{aligned}
$$

$$
=J_{1} \hat{S}^{z} \leftrightarrow \hat{S}_{\otimes}^{z} \hat{\mathbb{1}}+J_{2} \hat{S}^{z} \otimes \hat{\mathbb{H}} \otimes \hat{S}^{z}+\hat{\mathbb{L}} \otimes J_{1} \hat{S}_{z} \otimes \hat{S}_{z}
$$

$$
\begin{aligned}
& \hat{\omega}_{[\mathcal{L}]}=\left(\begin{array}{c}
\hat{\mathbb{I}}^{\underline{1}} \\
\hat{s}^{z} \\
0 \\
0
\end{array}\right)=\text { column } 1 \text { of } \hat{W}_{[l]} \\
& \hat{\omega}_{[1]}=\left(0, J_{1} \hat{s}^{z}, J_{2} \hat{S}^{z}, \hat{\mathbb{I}}\right) \\
& =\text { row } 4 \text { of } W_{[e]}
\end{aligned}
$$

How does an MPO act on an MPS in mixed-canonical representation w.r.t. site l ? Consider
$\hat{o}=\left|\vec{\sigma}^{\prime}\right\rangle \prod_{l} W_{[l]_{\sigma_{l}}}^{\sigma_{l}^{\prime}}\langle\vec{\sigma}|$

$$
\begin{equation*}
|\psi\rangle=\underbrace{\left|\alpha_{l}\right\rangle\left|\sigma_{l}\right\rangle\left|\alpha_{\ell-1}\right\rangle}_{\equiv|a\rangle} \underbrace{M_{l-1} \sigma_{l} \alpha_{l}}_{M^{a}} \tag{2}
\end{equation*}
$$

Here $\{|a\rangle\}$ form a basis for the mixed-canonical representation. Express operator in this basis: $\hat{O}=\left|a^{\prime}\right\rangle O_{a}^{a^{\prime}}\langle a|$, with matrix elements $O^{a^{\prime}}=\left\langle a^{\prime}\right| \hat{O}|a\rangle$
then $\left|\psi^{\prime}\right\rangle=\hat{O}|\psi\rangle=\left|a^{\prime}\right\rangle M^{a^{\prime}}$, with components $M^{\prime} a^{\prime}=O^{a^{\prime}} a M^{a}$

$$
O_{a}^{a^{\prime}}=\left\langle a^{\prime}\right| \hat{O}|a\rangle
$$

$$
\begin{equation*}
=L_{[l-1]}^{\alpha_{l-1}^{\prime}} \underbrace{\mu_{l}^{\alpha} l_{l-1}} W_{l l]}^{\mu_{l} \sigma_{l}^{\prime} \nu_{l}}{ }_{\sigma_{l}} R_{[l+1]}^{\alpha_{l}^{\prime}} \nu_{l \alpha_{l}} \tag{5}
\end{equation*}
$$

L can be computed iteratively, for $\quad \ell^{\prime} \leq \ell-1$:
(Similarly for R, for $\ell^{\prime} \geq \ell+1$)

$$
L_{\left[\ell^{\prime}\right] \mu \alpha}^{\alpha^{\prime}}=A_{\left[l^{\prime}\right] \sigma^{\prime} \alpha^{\prime}}^{+\alpha^{\prime}} L_{\left[\ell^{\prime}-1\right]}^{\alpha^{\prime}} \bar{\mu} \bar{\alpha} A_{\left[\ell^{\prime}\right]}^{\bar{\alpha} \sigma} W_{\left[l^{\prime}\right]}^{\bar{\mu} \sigma^{\prime}}
$$

For efficient computation, perform sums in this order:
(7)

1. Sum over $\bar{\alpha}^{\prime}$ for fixed $\sigma^{\prime}, \alpha^{\prime}, \bar{\alpha}, \bar{\mu}$ at cost $D \cdot\left(d D^{2} D_{w}\right)$
2. Sum over $\bar{\mu}, \sigma^{\prime}$ for fixed $\alpha^{\prime}, \bar{\alpha}, \mu, \sigma$ at cost $\left(D_{\omega} d\right) \cdot\left(D^{2} D_{\omega} d\right)$
3. Sum over $\bar{\alpha}, \sigma$ for fixed $\alpha^{\prime}, \alpha_{1} \mu$ at $\operatorname{cost}(D d) \cdot\left(D^{2} D_{\omega}\right)$

The application of MPO to MPS is then represented as:

$$
\begin{equation*}
A^{\prime} a^{\prime}=O_{a}^{a^{\prime}} A^{a} \tag{II}
\end{equation*}
$$

Consider a system of non-interacting fermions defined on sites $\ell=1, \ldots, N$, with local basis

$$
\left|\sigma_{\ell}\right\rangle \in\left\{\begin{array}{c}
\left.\left\{\left|0_{\ell}\right\rangle,| |_{l}\right\rangle\right\} \tag{array}\\
\text { empty, filled }
\end{array} \text { and }\left|\left.\right|_{\ell}\right\rangle=C_{\ell}^{+}\left|0_{\ell}\right\rangle\right.
$$

described by a quadratic Hamiltonian,

$$
\hat{H}=\hat{C}_{\ell}^{\dagger} h_{\ell}^{\ell^{\prime}} \hat{C}_{\ell}=\hat{C}_{\ell^{\prime}}\left(U D^{+}\right)^{\ell^{\prime}} \hat{C}_{\ell}=\sum_{\alpha} \varepsilon_{\alpha} \hat{d}_{\alpha}^{\dagger} \hat{d}_{\alpha}
$$

with eigenenergies ε_{α} and eigenmodes $\hat{d}_{\alpha}^{+}=\hat{c}_{l^{\prime}}^{\dagger} u_{\alpha}^{\ell^{\prime}}$

Filled Fermi sea of M particles: $|F\rangle=\prod_{\alpha=1}^{M} \hat{d}_{\alpha}^{\dagger}|0\rangle \underset{\substack{\text { vacuum state } \\ \text { (all sites empty) } \\ \text { bond dim. }=1}}{ }\left|i_{1}\right\rangle\left(\alpha \mid 0_{2}\right)\left(\alpha \ldots(1)\left|0_{N}\right\rangle\right.$
Goal: express this state as an MPS!
Strategy: express each $\hat{d}_{\alpha}^{\dagger}$ as an MPO, sequentially apply these to vacuum state.

MPO representation of $d_{\alpha}^{\dagger}: \quad$ (similar to MPS-IV.1.19)

$$
=\left(\begin{array}{ll}
0 & 1
\end{array}\right) \prod_{l=1}^{M} \hat{W}_{[l]}\binom{1}{0}, \quad \hat{W}_{[l]}=\left(\begin{array}{ll}
\hat{z}_{[l]} & 0 \\
\hat{C}_{l}^{\dagger} u_{\alpha}^{\ell} & \hat{\mathbf{1}}_{[l l}
\end{array}\right)
$$

$\begin{aligned} & \text { Matrix } \\ & \text { elements: }\end{aligned} W_{\{l\}}^{\mu \sigma_{l}^{\prime}} \nu_{\sigma_{l}}=\left(\begin{array}{l}(z)_{l}^{\sigma_{l}^{\prime}} \\ \left(c^{+}\right)^{\sigma_{l}^{\ell}}{ }_{\sigma_{l}} u_{\alpha}^{\ell}\end{array}\right.$
$\left.(\mathbb{1})^{\sigma_{l}^{\prime} \sigma_{l}}\right)_{\nu}^{\mu}=\left(\begin{array}{cc}\left(\begin{array}{cc}1 & -1\end{array}\right) & 0 \\ \left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right) U_{\alpha}^{l} & \left(\begin{array}{ll}1 & 1\end{array}\right)\end{array}\right)$

When computing $\left.d_{M}^{\dagger} \cdots d_{2}^{t} d_{1}^{+} 10\right)$ a truncation is needed after each application of an MPO to an MPS. If the U^{ℓ} coefficients have similar magnitudes throughout the chain (ie. when varying ℓ for fixed α), then application of d_{α}^{\dagger} substantially modifies the matrices of the MPS on all lattice sites, hence subsequent
truncation is likely to introduce considerable errors.

To avoid this, it is advisable to express the d_{α}^{\dagger} through 'Wannier orbitals' that are more localized in space, in that they diagonalize the projection, \tilde{X}, of the position operator \hat{X} into the space of occupied orbitals [Kivelson1982] :
position operator: $\hat{X}=\sum_{\ell=1}^{N} j c{ }_{j} c_{j}$
its projection: $\tilde{X}_{\alpha}^{\alpha^{\prime}}=\langle 0| d_{\alpha^{\prime}}^{\dagger} \hat{X} d_{\alpha}|0\rangle$

(then $\langle 0| f_{r}^{t^{\prime}} \hat{X} f_{r}|0\rangle=B_{\alpha^{\prime}}^{t^{\prime}}\langle 0| d_{\alpha^{\prime}} \hat{X} d_{\alpha}|0\rangle B_{r}^{\alpha}=B_{\alpha_{r}^{\prime}}^{t^{\prime}} \tilde{X}_{\alpha}^{\alpha^{\prime}} B^{\alpha_{r}}=D_{r}^{\gamma^{\prime}} \quad$ is diagonal) Now, express the Fermi sea through Wannier orbitals, using $\quad d_{\alpha}^{t}=f_{\alpha}^{t} 3^{t r} \alpha$

$$
\begin{aligned}
& |F\rangle=d_{M}^{t} \ldots d_{2}^{t} d_{1}^{t}|0\rangle=\left(f_{r_{M}}^{t} B_{M}^{t_{r_{M}}}\right) \ldots\left(f_{r_{2}}^{t} B_{2}^{t_{r_{2}}}\right)\left(f_{r_{1}}^{t} B^{t_{r_{1}}}, \mid 0\right) \\
& =\underbrace{B^{t_{r_{1}}} \ldots B^{t r_{2}} B^{t_{r_{1}}}, \varepsilon_{1_{M} \ldots r_{2}} f_{M} \ldots f_{2}^{t} f_{1}^{t}|0\rangle}_{\operatorname{det} B^{t}=1 \quad \text { (since } B \text { is unitary) }} \\
& =\prod_{r=1}^{M} f_{r}^{t}|0\rangle=\prod_{r=1}^{M} c_{\ell}^{t}(U \bar{B})^{l} r|0\rangle \\
& \text { due to Pauli principle, only those terms } \\
& \text { survive for which all r-indices are different. } \\
& \text { In each surviving term, rearrange all } \mathrm{f}^{\dagger} \text { 's } \\
& \text { into canonical } \mathrm{N}, \ldots, 2,1 \text { order, keeping track } \\
& \text { of minus signs using a fully antisymmetric } \\
& \text { Levi-Civita symbol, } \varepsilon_{\ldots i \ldots j \ldots}=-\varepsilon_{\ldots j \ldots i \ldots}
\end{aligned}
$$

Truncation errors are much reduced when using an MPO representation for the f operators:

$$
f_{r}^{t}=\left(\begin{array}{ll}
0 & 1
\end{array}\right) \prod_{l=1}^{M} \hat{W}_{[l]}\binom{1}{0}, \quad \hat{W}_{[l]}=\left(\begin{array}{ll}
\hat{z}_{[l l} & 0 \\
\hat{C}_{l}^{\dagger}(U \bar{B})^{l} & \hat{\mathbb{1}}_{(l)}
\end{array}\right)
$$

In practice, truncation errors have been found to be smallest [Wu2020] if the parton operators are applied in an 'left-meets-right' order (first apply left-most , then right-most, then proceed inwards):
e.g. for even $\left.N: \quad|F\rangle=f_{N / 2}^{+} f_{N / 2-1}^{t} \ldots f_{N-1}^{t} f_{2}^{t} f_{N}^{t} f_{1}^{t} 10\right\rangle$

