- The Density Matrix Renormalization Group (DMRG) was invented by Steve White (student of Ken Wilson) to solve general quantum chain models. [White1992], [White1993]
- First realization of connection between MPS and DMRG in limit $\mathcal{L} \rightarrow \infty \quad$: Ostlund \& Rommer [Ostlund1995]
- Realization that finite-size DMRG leads to MPS: Dukelsky, Martin-Delgado, Nishino, Sierra [Dukelski1998]
- Modern formulation: Vidal [Vidal2003], [Vidal2004], Cirac \& Verstraete [Verstraete2004]
- Time evolution: Daley, Kollath, Schollwöck, Vidal [Daley2004], White, Feiguin [White2004]
- Connection to NRG: Weichselbaum, Verstraete, Schollwöck, Cirac, von Delft [arXiv:0504305], [Weichselbaum2009]

1. Iterative ground state search

View space of all MPS of given bond dimension, D, as variational space.
Graphical representation, assuming site-canonical form with orthogonality center at site ℓ :

$$
\begin{align*}
& |\Psi\rangle=|\beta\rangle\left|\sigma_{l}\right\rangle|\alpha\rangle\left[C_{l}\right]^{\alpha \sigma_{l} \beta} \tag{1}\\
& H=\left|\vec{\sigma}^{\prime}\right\rangle \prod_{l}\left|W_{l}\right|^{\sigma_{l}^{\prime}}{\sigma_{l}}_{l}\langle\vec{\sigma}|
\end{align*}
$$

Arrow convention: use same arrow directions on virtual bonds for MPO as in MPS. Then, orientation of MPS triangles, $\bar{Y}, T, \lambda, \perp$, hence we henceforth drop most (soften all) arrows.

Minimize $\langle\Psi| \hat{H}|\bar{\Psi}\rangle$ in this space, subject to constraint of unit normalization, $\langle\bar{\Psi} \mid \bar{\Psi}\rangle=1$.

Do this one tensor at a time:

$$
\begin{equation*}
\frac{\partial}{\partial C_{\ell}^{t}}[\langle\bar{\Psi}| \hat{H}|\bar{\Psi}\rangle-\lambda\langle\Psi \mid \bar{\Psi}\rangle]=0 \tag{5}
\end{equation*}
$$

Structure of this equation: $\left.\quad 1\right|_{l} ^{(1)} C_{\ell}=\lambda C_{\ell}$
with normalization

$$
\begin{equation*}
C_{l}^{t} C_{l}=1 \tag{7}
\end{equation*}
$$

Here, C_{ℓ} is viewed as vector, labeled by composite index $a^{\prime}=\left(\alpha^{\prime} \sigma^{\prime}, \beta^{\prime}\right)$, and $H_{\ell}^{(1)}$ as a matrix:

$$
\begin{equation*}
\left[1-1_{l}^{(1)}\right]^{1} a\left[C_{l}\right]^{a}=\lambda\left(C_{l}\right]^{a^{\prime}} \quad \text { with normalization } \quad\left[C_{l}^{f}\right]_{a}\left[C_{l}\right]^{a}=1 \tag{9}
\end{equation*}
$$

compare (MPS-IV.3.11)

(7) is an eigenvalue equation for C_{ℓ} and can be solved with standard linear algebra tools, e.g. Lanczos algorithm (next section).

More generally: if $|\psi\rangle$ is not represented in site-canonical form, one obtains a generalized eigenvalue equation of the form $H_{\ell}^{(1)} C_{\ell}=G_{\ell}^{(1)} C_{\ell}$, with $G_{\ell}^{(1)}$ defined by r.h.s. of (6).

Use the 'eigenvector' with the lowest eigenvalue (= current estimate of ground state energy), say C_{ℓ}^{G} to 'update' MPS, then move to next site, use SVD on $\tilde{C}_{\{\ell]}$ to shift orthogonality center to site $\ell+1$:

optimize $C_{\ell+1}$, etc..

'Sweep' back and forth until convergence of ground state energy has been achieved. This works remarkably well for 1D chains with short-ranged interactions.

- Fast way of finding extremal eigenvalues of an Hermitian NxN matrix, H.
- Prerequiste: an algorithm for computing $H|\psi\rangle$, for any vector $|\psi\rangle$.

We seek the extremal value of

$$
\begin{equation*}
E[|\psi\rangle]=\frac{\langle\psi| H|\psi\rangle}{\langle\psi \mid \psi\rangle} \tag{1}
\end{equation*}
$$

Denote extremal value by

$$
\begin{equation*}
E_{g}=\min E[|\psi\rangle] \equiv E\left[\left|\psi_{g}\right\rangle\right] \tag{2}
\end{equation*}
$$

The direction of steepest ascent of the functional $E[|\psi\rangle]$, evaluated at $|\psi\rangle$, is given by

$$
\text { 'functional gradient': } \quad \begin{align*}
\frac{\delta E[|\psi\rangle]}{\delta\langle\psi|} & \equiv \frac{H|\psi\rangle}{\langle\psi \mid \psi\rangle}-\frac{\langle\psi| H|\psi\rangle}{\langle\psi \mid \psi\rangle^{2}}|\psi\rangle \tag{3}\\
& =\frac{H-E[|\psi\rangle]}{\langle\psi \mid \psi\rangle}|\psi\rangle \equiv|\psi a\rangle \tag{4}
\end{align*}
$$

Moving in opposite direction will thus lower the energy:

$$
\begin{equation*}
E\left[|\psi\rangle-\alpha\left|\psi_{a}\right\rangle\right]<E[|\psi\rangle] \quad \text { for small, positive } \alpha \tag{5}
\end{equation*}
$$

To find optimal value for α, minimize $E\left[|\psi\rangle-\alpha\left|\psi_{a}\right\rangle\right]$ w.r.t. the 'variational parameter' α, in the space $\quad K_{1}:=\operatorname{span}\left\{|\psi\rangle,\left(\psi_{a}\right\rangle\right\}=\operatorname{span}\{|\psi\rangle, H|\psi\rangle\}$. (6)
Starting from the random initial state $|\psi\rangle$, construct a normalized basis $\left\{\left|v_{0}\right\rangle,\left|v_{1}\right\rangle\right\}$ for this space:

First basis vector:

$$
\begin{equation*}
\left|v_{0}\right\rangle:=\frac{|\psi\rangle}{\sqrt{\langle\psi \mid \psi\rangle}} \tag{3}
\end{equation*}
$$

Second basis vector:

$$
\begin{align*}
& \text { vector: } \underset{\begin{array}{l}
\text { normalization factor, } \\
\text { such that }\left\langle v_{1} \mid v_{1}\right\rangle
\end{array} \rightarrow b_{1}\left|v_{1}\right\rangle:=\left|\tilde{v}_{1}\right\rangle:=H\left|v_{0}\right\rangle}{\substack{\text { orthonormalize } \\
\text { w.r.t. to }\left|v_{0}\right\rangle}}\langle\underbrace{\left.v_{0}|H| v_{0}\right\rangle}_{:=a_{0}} \tag{8}
\end{align*}
$$

$$
b_{1}:=\sqrt{\left\langle\tilde{v}_{1} \mid \tilde{v}_{1}\right\rangle} \stackrel{\left\langle v_{1}\right|(8)}{=}\left\langle v_{1}\right| H\left|v_{0}\right\rangle+\sigma_{0}^{\text {since }\left\langle v_{1} \mid v_{0}\right\rangle \stackrel{(8)}{=} 0}
$$

Now find a matrix representation of H in this space: define

$$
\begin{equation*}
a_{0}:=\left\langle v_{0}\right| H\left|v_{0}\right\rangle, \quad a_{1}:=\left\langle v_{1}\right| H\left|v_{1}\right\rangle, \quad b_{1}^{2}=\left\langle\tilde{v}_{1} \mid \tilde{v}_{1}\right\rangle \tag{0}
\end{equation*}
$$

then

$$
\begin{equation*}
H\left|v_{0}\right\rangle \stackrel{(8)}{=}\left|v_{1}\right\rangle b_{1}+\left|v_{0}\right\rangle a_{0} \tag{11}
\end{equation*}
$$

hence in the space K_{1}, the Hamiltonian has the matrix representation

$$
H_{k_{1}}=\left(\begin{array}{cc}
\left\langle v_{0}\right| H\left|v_{0}\right\rangle & \left\langle v_{0}\right| H\left|v_{1}\right\rangle \tag{12}\\
\left\langle v_{1}\right| H\left|v_{0}\right\rangle & \left\langle v_{1}\right| H\left|v_{1}\right\rangle
\end{array}\right)=\left(\begin{array}{ll}
a_{0} & b_{1} \\
b_{1} & a_{1}
\end{array}\right)
$$

The ground state of $H_{K_{1}}$, say $|\xi\rangle_{K_{1}}$, yields the optimal choice for α.
Now we could iterate: use $|\zeta\rangle_{K_{1}}$ as starting point for another optimization step. Convergence is rapid. Monitor quality of result by computing the residual energy variance,

$$
\begin{equation*}
\tau[|\psi\rangle] \equiv \|(H-E)|\psi\rangle \|^{2}=\langle\psi| H^{2}|\psi\rangle-\langle\psi| H|\psi\rangle^{2} \tag{13}
\end{equation*}
$$

and stop when it drops below some threshold.

Krylov space

After L steps, starting from $\left(v_{0}\right)$, the resulting vector will live in

$$
\begin{align*}
& K_{L}\left(\left|v_{0}\right\rangle\right)=\operatorname{span}\left\{\left|v_{0}\right\rangle, H\left|v_{0}\right\rangle, H^{2}\left|v_{0}\right\rangle, \ldots, H^{L}\left|v_{0}\right\rangle\right\} \tag{14}\\
&=\text { 'Krylov space of } H \text { over }\left|v_{0}\right\rangle \text { ((4) } \\
& \text { (dimension } L+1 \text {). (Is) }
\end{align*}
$$

Instead of repeatedly minimizing in 2×2 subspaces, we could first construct K_{L}, then compute its ground state. (This is faster, since it amounts to using L simultaneous variational parameters instead of L separate ones.) To do this, iteratively construct a 'Krylov basis' for K_{L} :

Krylov basis $\left\{\left|v_{0}\right\rangle,\left|v_{1}\right\rangle, \ldots,\left|v_{L}\right\rangle\right\}$
As before: $\quad b_{1}\left|v_{1}\right\rangle:=\left|\tilde{v}_{1}\right\rangle:=H\left|v_{0}\right\rangle-a_{0}\left|v_{0}\right\rangle$
Third vector: ${ }^{\text {normalize }}{ }_{b_{2}}\left|v_{2}\right\rangle:=\left|\tilde{v}_{2}\right\rangle:=H\left|v_{1}\right\rangle-\sum_{j=0}^{1}\left|v_{j}\right\rangle\left\langle v_{j}\right| H\left|v_{1}\right\rangle$

$$
=H\left|v_{1}\right\rangle-\underbrace{\left|v_{1}\right\rangle a_{1}-\left|v_{0}\right\rangle \overbrace{\left\langle v_{0}\right| H\left|v_{1}\right\rangle}^{b_{1}^{*}}}_{\left\langle v_{1}\right| H\left|v_{1}\right\rangle}
$$

where

$$
\begin{equation*}
b_{2} \stackrel{(17)}{=} \sqrt{\langle\text { real }}\left\langle\tilde{v}_{2} \mid \tilde{v}_{2}\right\rangle \stackrel{(18)}{=}\left\langle v_{2}\right| H\left|v_{1}\right\rangle \tag{18}
\end{equation*}
$$

Note: $\quad\left\langle v_{2}\right| H\left|v_{0}\right\rangle=0$, since $H\left|v_{0}\right\rangle \in \operatorname{span}\left\{\left|v_{0}\right\rangle,\left|v_{1}\right\rangle\right\}$
Fourth vector: $b_{3}\left|v_{3}\right\rangle:=\left|\tilde{v}_{3}\right\rangle:=H\left(v_{2}\right)-\sum_{j=0}^{2}\left|v_{j}\right\rangle\left\langle v_{j}\right| H\left(v_{2}\right)$

Thus we obtain a two-term iteration scheme: we need to store only 3 vectors at a time!
nth step: $\quad b_{n+1}\left|v_{n+1}\right\rangle:=\left|\tilde{v}_{n+1}\right\rangle:=H\left|v_{n}\right\rangle-\sum_{j=0}^{n}\left|v_{j}\right\rangle\left\langle v_{j}\right| H\left|v_{n}\right\rangle$

$$
\begin{equation*}
=H\left|v_{n}\right\rangle-\left|v_{n}\right\rangle a_{n}-\left|v_{n-1}\right\rangle b_{n} \tag{24}
\end{equation*}
$$

with

$$
\begin{equation*}
a_{n}:=\left\langle v_{n}\right| H\left|v_{n}\right\rangle, \quad b_{n}=\left\langle v_{n}\right| H\left|v_{n-1}\right\rangle \tag{25}
\end{equation*}
$$

[If it happens that $b_{n+1}=0$, pick an arbitrary $\left|v_{n+1}\right\rangle$ orthonormal to all $\left|v_{j}\right\rangle, j=0, \ldots, n$.]

Throughout we have: $\quad\left\langle v_{n}\right| H\left|v_{j}\right\rangle=0$ for $j=0, \ldots, n-2$
since

$$
H_{j} \in \operatorname{span}\left\{\left|v_{j+1}\right\rangle,\left|v_{j}\right\rangle,\left|v_{j-1}\right\rangle\right\}
$$

Hence, rearranging (24):

$$
\begin{equation*}
H\left|v_{n}\right\rangle=\left|v_{n-1}\right\rangle b_{n}+\left|v_{n}\right\rangle a_{n}+\left|v_{n+1}\right\rangle b_{n+1} \tag{28}
\end{equation*}
$$

Hence, in K_{L},
H has tridiagonal form:

$$
H_{K_{L}}=\left(\begin{array}{ccccccc}
a_{0} & b_{1} & & & & & \\
b_{1} & a_{1} & b_{2} & & & & \\
& b_{2} & a_{2} & b_{3} & & & \\
& & b_{3} & a_{3} & & & \\
& & & & \ddots & & \\
& & & & & a_{L-1} & b_{L} \\
& & & & & b_{L} & a_{L}
\end{array}\right)
$$

Ground state of $H_{K_{L}}$ satisfies the eigenvalue equation $\quad\left(H_{K_{L}}\right)_{j}^{i}\left(\psi_{g}^{L}\right) j=E_{g}^{L}\left(\psi_{G}^{L}\right)^{i}$ Thus

$$
\left.\left.E_{g}^{L} \text { and } \int \psi_{g}^{L}\right\rangle=\sum_{j=0}^{L} \int v_{j}\right\rangle\left(\psi_{G}^{L}\right) j
$$

are the best approximations, within the Krylov space $K_{L^{\prime}}$, of true ground state energy and ground state. Note: $\left.\int \psi_{G}^{L}\right\rangle$ can be constructed 'on the fly', one term at a time, by restarting Lanczos iteration from $\left|v_{0}\right\rangle$.

The Lanczos scheme converges exponentially fast, with a rate $\sim\left[\right.$ gap to first excited state] ${ }^{1 / 2}$.

1. Start with arbitrary $\quad\left|v_{0}\right\rangle$
2. First iteration step:
(i) $\quad\left|\tilde{v}_{1}\right\rangle=H\left|v_{0}\right\rangle$
(ii) $\quad a_{0}=\left\langle\tilde{v}_{1} \mid v_{0}\right\rangle$
(iii) $\left|\tilde{v_{1}}\right\rangle=\left|\tilde{v_{1}}\right\rangle-a_{0}\left|v_{0}\right\rangle$
3. General iteration step, for $n \geq 1$:
(i) $\quad b_{n}=\sqrt{\left\langle\tilde{v}_{n} \mid \tilde{v}_{n}\right\rangle}$
(ii) If $b_{n} \neq 0$, then $\quad\left|v_{n}\right\rangle=\left|\tilde{v}_{n}\right\rangle / b_{n}$
else, pick $\left|v_{n}\right\rangle$ as arbitrary normalized vector orthogonal to all $\left|v_{0}\right\rangle, \ldots,\left|v_{n-1}\right\rangle$
(iii) $\left|\tilde{v}_{n+1}\right\rangle=H\left|v_{n}\right\rangle$
(iv) $\quad a_{n}=\left\langle\tilde{v}_{n+1} \mid v_{n}\right\rangle$
(v)

$$
\left|\tilde{v}_{n+1}\right\rangle=\left|\hat{v}_{n+1}\right\rangle-\left|v_{n}\right\rangle a_{n}-\left|v_{n-1}\right\rangle b_{n}
$$

and back to 3(i).
There are other ways of organizing this iteration loop, but the one shown here is numerically the most stable. [Paige1972]

Suppose we have an MPS representation for ground state, $\quad(g)=\frac{A S A S C G B G B G}{Y}$ found by DMRG. Excited states can be constructed repeating a DMRG sweep in space orthogonal to $|G\rangle$.

Extremize: $\quad\langle\Psi| H|\Psi\rangle-\lambda_{1}\langle\Psi \mid \Psi\rangle-\lambda_{2}\langle\Psi \mid \xi\rangle$
Lagrange multipliers enforce $\langle\bar{\Psi} \mid \Psi\rangle=1$ and $\langle\bar{\Psi} \mid g\rangle=0$.
Extremization w.r.t. C_{l}^{\dagger} yields

Generic structure of this equation, in mixed-canonical representation of site ℓ [compare (DMRG-I.1.7)]:

$$
\begin{equation*}
H_{l} C_{l}=\lambda_{1} C_{l}+\lambda_{2} G_{l} \tag{6}
\end{equation*}
$$

(s) with $C_{l}^{+} \cdot C_{l} \stackrel{(3)}{=}$,

$$
c_{l}^{t} G_{l}^{(3)}=0
$$

cf. (DMRG-I.1.7)
Displaying indices: $a^{\prime}=\left(\alpha^{\prime}, \sigma^{\prime}, \beta^{\prime}\right)$

$$
\begin{aligned}
& {\left[H_{l}\right]_{a}^{a^{\prime}}\left[C^{l}\right]^{a}=\lambda_{1}\left[C_{l}\right]^{a^{\prime}}+\lambda_{2}\left[g_{l}\right]^{a^{\prime}} \quad\left[C_{l}^{t}\right]_{a}\left[C_{l}\right]^{a}=1, \quad\left[C_{l}^{t_{l}}\right]_{a}\left[G_{l}\right]^{a}=1(7)}
\end{aligned}
$$

$$
\begin{align*}
& \text { with } L \text { and } R \text { computed iteratively, } \\
& {\left[L_{l}\right]_{\alpha}=\left[A_{l}^{\prime}\right]_{\sigma \alpha^{\prime}}^{\prime}\left[L_{l-1}\right]^{\prime} \bar{\alpha}^{\prime}\left(A_{l}^{j} \mid\right]^{l^{\prime}}{ }^{\prime \prime} \bar{\alpha}^{\prime}} \tag{7}\\
& \text { (b) }
\end{align*}
$$

$$
\begin{equation*}
\text { Index-free notation for (5): } \quad H|A\rangle=\lambda_{1}|A\rangle+\lambda_{2}|g\rangle, \quad\langle A \mid g\rangle=0 \tag{8}
\end{equation*}
$$

Define projector onto subspace orthogonal to $|G\rangle: \quad P_{G}=\mathbb{1}-|G\rangle\langle G|$ [with indices: $P_{g}^{a^{\prime}}=\mathbb{1}_{a}^{a^{\prime}}-g^{a^{\prime}} g_{a}^{+}$, so that $P_{g}^{a^{\prime}}{ }_{a} g^{a}=0$] Project (8) onto this subspace: $\quad P_{g} H(\overbrace{g}+|g\rangle \underbrace{\langle g|}_{(8)=0}|A\rangle=\lambda_{1} P_{g} \mid A)+0$

$$
\begin{equation*}
P_{g} H P_{g}|A\rangle=\lambda_{1} P_{y}|A\rangle \tag{12}
\end{equation*}
$$

This is simply an eigenvalue problem, for $\mathrm{P}_{g} H$, in subspace orthogonal to $|g\rangle$. It can be solved using straightforward generalization of Lanczos scheme, using Krylov subspace orthogonal to $|\boldsymbol{g}\rangle$: Given an arbitrary initial state $\left|v_{0}\right\rangle$, project it onto orthogonal subspace, $\left|v_{0}^{1}\right\rangle=P_{g}\left|v_{0}\right\rangle$, 13 , and construct new Krylov vectors using

$$
\begin{equation*}
\left|\tilde{v}_{n+1}\right\rangle=P_{g} H\left(v_{n+1}\right\rangle-\left|v_{n}\right\rangle a_{n}-\left|v_{n-1}\right\rangle b_{n}^{*} \tag{14}
\end{equation*}
$$

Why not simply use excited states in K_{L} ? Because numerical noise can cause the $\left|v_{n}\right\rangle$ to be not exactly orthogonal, hence for $j\left\langle n-2,\left\langle v_{n} \mid v_{j}\right\rangle \simeq 10^{-16}\right.$ rather than 0 .

This leads to spurious multiple copies of eigenstates ('ghost states'). For the ground state, the variational principle ensures that the loss of orthogonality does not become a severe problem. But for excited states, it does. To prevent this, explicit reorthogonalization is needed at every step, using P_{g}, as indicated above.

Block-Lanczos for excited states

Standard Lanczos: represent action of H as

$$
H\left|v_{0}\right\rangle=\left|v_{0}\right\rangle a_{0}+\left|v_{1}\right\rangle b_{1} \Rightarrow
$$

Block-Lanczos: start with set of M orthogonal vectors,

$$
\left(\begin{array}{lll}
a_{0} & b_{1} & \\
b_{1} & a_{1} & b_{2} \\
& b_{2} & \ddots
\end{array}\right)
$$

$$
\begin{aligned}
& \left|v_{0, i}\right\rangle, \quad i=1, \ldots, M, \text { and represent action of } H \text { as } \\
& H\left|v_{0, i}\right\rangle=\left|v_{0, j}\right\rangle \mathbb{1}_{i}^{j}\left(a_{1}\right)^{i}+\left|v_{i, j}\right\rangle\left(b_{1}\right)_{i}^{j}
\end{aligned}
$$

with
and

$$
\left\langle v_{0, j} \mid v_{1, i}\right\rangle=0 \quad\left\langle v_{1, j} \mid v_{1, i}\right\rangle=\mathbb{1}_{i}
$$

$$
\left(a_{1}\right)^{i}=\left\langle v_{0}, i\right| H\left|v_{0, i}\right\rangle, \quad(b,)^{j}=\left\langle v_{1, j}\right| H\left|v_{0, i}\right\rangle
$$

etc. Then the lowest M eigenstates of block-tridiagonal matrix give the Lanczos approximation for lowest M eigenstates of H
$\left(\begin{array}{l}{\left[\begin{array}{l}\left.a_{0}\right]\end{array}\left(\begin{array}{l}\left.b_{1}^{t}\right) \\ {\left[\begin{array}{l}b_{1}\end{array}\right]\left(a_{1}\right)\left[\begin{array}{l}b_{2}^{+}\end{array}\right]} \\ \left(b_{2}\right)\end{array}\right.\right.}\end{array}\right)$

If one encodes symmetries (see Sym-I to Sym-III), then 'one-site update' (discussed above) can get stuck: if one starts in the wrong symmetry sector, one stays there, because one-site update offers no way of enlarging the Hilbert space during the variational search to explore other symmetry sectors.
Cure: 'two-site' update, which variationally optimizes two A-tensors at a time.

Represent MPS in mixed-canonical two-site basis:

Then extremize simultaneously w.r.t.
C_{l}^{+}and B_{l+1}^{t}

$$
\begin{equation*}
\frac{\partial}{\partial B_{l+1}^{+}} \frac{\partial}{\partial C_{l}^{+}}[\langle\Psi| \hat{H}|\bar{\Psi}\rangle-\lambda\langle\Psi \mid \Psi\rangle]=0 \tag{2}
\end{equation*}
$$

close zippers from left and right $=\lambda \rightarrow \sigma^{\sigma^{\prime}} \int_{\sigma^{\prime}}^{\alpha^{\prime}}$
Compact $\left[H_{l}^{(2)}\right]_{a}^{a^{\prime}}\left[\psi_{l}^{(\imath)}\right]^{a}=\lambda\left[\psi_{l}^{(\imath)}\right]^{a^{\prime}}$ with composite index $a=(\alpha, \sigma, \bar{\sigma}, \beta)$
and
$\left[H_{l}^{(2)}\right]_{a}^{a^{\prime}}=$

$L_{\ell-1} W_{\ell} W_{l+1} R_{l+2}$
Use Lanczos to find lowest eigenvalue of eigenvalue equation (5), and reshape updated $\tilde{\psi}_{l}^{(2)}$:
updated
$\left[\tilde{\psi}_{l}^{(2)}\right]^{a} \stackrel{\text { reshape }}{=}$

Key point: S has $D d$ singular values, larger than the virtual bond dimension D of M and B. Hence, it explores a larger state space, in general also including more symmetry sectors!

Truncate down to D and reshape:

This concludes optimization of site ℓ. Now move one site to the right and repeat. Sweep back and forth until convergence of full chain.

