
: Wilson chain

NRG is the method of choice for treating 'quantum impurity models':

impurity model = 'impurity' +  'bath' = discrete states coupled to non-interacting continuum

A canonical example of a quantum impurity model is:

1. Single-impurity Anderson model (SIAM)  [Anderson1961]

Anderson introduced this model in 1961 to explain formation of local moments in magnetic alloys 

(metals with magnetic impurities). Starting 1998, it has also been realized in numerous

experiments involving transport through quantum dots [Goldhaber-Gorden1998], [Wiel2000]. 

NRG was invented by Kenneth Wilson [Wilson1975]. It was part of his Nobel prize citation 

for development of the renormalization group (RG) concept. It is the first example of 

an MPS method (but at the time was not formulated in MPS language).

First readable exposition: [Krishna-murthy1980a, Krishna-murthy1980b]

Standard review: [Bulla2008]; in MPS context: [Weichselbaum2012a]

NRG-I.1

hybridization strength = level width 

half-bandwidth

take

Coulomb

(band of free electrons)

(local level)

(hybridization between local level and band)

hybridization function, describes 'how strongly 

does level with energy       couple to impurity'?

magnetic field
local level position

= local charge for spin

We'll choose 'flat band': 

NRG I: Numerical renormalization group 
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tunneling tunneling

tunneling tunneling

Regime of interest: empty and doubly occupied states of impurity lie far above

singly occupied states ('local moment regime'):

Impurity forms a 'local moment' (= localized spin). Then states with                         or 

are accessible only via virtual transitions, involving tunneling into the bath and back, leading

(amongst other process) to 'spin-flip transitions':

Netto result: impurity spin is flipped, and particle-hole excitation is created in bath

Effective low-energy model (below the energy scale      ) describing these spin-flip processes is the

Kondo model:    [Kondo1964, Schrieffer1966]    (= Anderson model projected to 

particle-hole symmetry if:

Local Hilbert space (for impurity):

State Local energy Level scheme for 

Then average occupancy of local level is 

amplitude
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In late 1960's, Anderson had hypothesized (correctly!) that ground state of the Kondo model is a 

spin singlet:  the conduction band electrons 'screening' the local spin to give total spin                . 

States with                                               , have spin     . The operator           acts on this spin-     

multiplet, like the matrices              on two-component spinors,                              .

= quantum-mechanical spin-       degree of freedom.

SIAM and Kondo model have the same low-energy behavior. We will discuss them interchangeably.

However, no formal proof was available at that time. (In it was proven by Bethe Ansatz in 1983.)

Wilson's goal (1975): numerically study ground state and low-energy properties!

mapping to 'Wilson chain'-

iterative diagonalization / truncation / rescaling-

Tools: logarithmic discretization of band-

with

spin-1/2 operators

Perturbative treatment of Kondo model breaks down for            (next section).  What is ground state?

'spin-spin exchange interaction', 
if derived from SIAM: 
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NRG-I.2

Why does Kondo model require non-perturbative treatment (like NRG)?

Perturbation theory in                     leads to logarithmic divergences:

'spin-spin exchange interaction'

Dimensionless coupling: where       = conduction electron density of states at 

same form as first-order term, but with modified coupling

[Kondo1964], [von Delft, 'Mesoscopic Physics', SoSe2013, lecture 9]

One finds: effective vertex is                     , with 

with

spin-1/2 operators

with 

bandwidth

Thus 'effective coupling strength',       , computed in 2nd order 
(phonons)

perturbation theory, grows with decreasing temperature! 

This was Kondo's explanation for 'resistivity anomaly' in

magnetic alloys, which had been a puzzle since 1934.

Occurrence of                   implies conceptual problem: effective coupling           grows with decreasing     , 

hence perturbation theory breaks down for sufficiently small     . 

'Kondo temperature' is the scale where 2nd-order term becomes comparable to 1st-order term, 

signaling breakdown of pert. theory: 

         is a 'dynamically generated scale', the 'characteristic low-energy scale' of Kondo problem.

Increase of          with decreasing       means: ground state can be understood by considering 

This heuristic argument leads to the conclusion: ground state is a spin singlet.

2. Kondo model: low-order perturbation theory
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                comes from sum over intermediate states in 2nd-order contribution to 

[Anderson1970], [Hewson1997]

NRG-I.3

Anderson's idea: to reduce                  problem,

integrate out only high-energy modes. 

Define 'reduced bandwidth',

and split integral into two parts: 

smaller bandwidth

If                , then no ln-divergence occurs, integral yields 

Upshot:

hence effective vertex can also be described using a reduced bandwidth, 

and a modified coupling:

Change in coupling:

Differential change:

'scaling equation'

3. Kondo model: poor man's scaling RG
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RG flow has to be stopped when                       , so renormalized, T-dependent coupling is given by 

Define Kondo temperature,            ,  as the temperature where 

for

Consequence: 'universality' - bare parameters        ,        occur in 

effective theory only in the combination

Therefore, measurements made for                     with different bare

parameters will show scaling collapse when plotted as function of 

Scaling approach breaks down for                       . Lower temperatures, require different approach. 

Conjecture for  'strong-coupling regime: If                         , then exchange interaction

becomes so strong that                                          Hence ground state 

is a 'singlet', for which 'impurity spin is screened by conduction electrons.

Consequence for spin susceptibility (will be verified numerically): 

(Pauli susceptibility of free spin)

(screened singlet)

for

for

RG-flow of renormalized coupling

grows as
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Goal: to resolve low-energy regime. Tool: logarithmic discretization of band.

Define discrete energies:

Represent each interval in terms of a single state, 

with energy            and coupling (to impurity)                , chosen such that the hybridization function, 

is represented 'as well as possible'. This leads to 

Discretized Hamiltonian for SIAM    (treatment for Kondo model is analogous)

particle-like excitations hole-like excitations

Key observation: only a single linear combination couples to impurity!

Hybridization function:

Requirements:  

preserve weight:

preserve value at zero energy:

NRG-I.4

'discretization parameter'

'star geometry'

These partition the band into intervals: 

4. Logarithmic discretization, Wilson chain
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Simplest choice that gets weight right (used by Wilson):

interval between            and 

For 'box hybridization function', 

otherwise

one finds:

decrease 
exponentially!

For most recent improvement of discretization scheme: [Bruognolo2016a].
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tridiagonalize

(ignoring spin index)

By 'tridiagonalization', we can bring this into form of a 'tight-binding chain':

by imposing the conditions:

Adding the impurity term, we obtain a 'Wilson chain', with impurity at site             :

For 'box hybridization function', Wilson finds:

(since band is symmetric around Fermi energy, at 

couplings decay exponentially along chain!-

'energy-scale separation'-

site           perturbs site       only weakly!-

solve chain iteratively, truncate at each step.-

Key property of Wilson chain:

NRG-I.5

(via Lanczos!)

normalization fixes 

Tridiagonalization can be achieved with the Lanczos method [Lanczos1950, Paige1972]:

iterative method to construct the tridiagonal matrix from general Hermitian matrix 

1st iteration:

5. Wilson chain
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iterative method to construct the tridiagonal matrix from general Hermitian matrix 

1st iteration:

Choose the initial basis vector.

Here we use the basis for the impurity site.

Act Morthogonalize

(Gram-Schmidt)

Normalize and register as the 2nd basis vector:

First sub-diagonal element [i.e., (2,1) element]:

Second diagonal element [i.e., (2,2) element]:

n-th iteration:  basis set

act Morthogonalize

(Gram-Schmidt)

Result:

(due to orthogonalization)

for

first diagonal element 
[i.e., (1,1) element]
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NRG-I.6

(scetches are for spinless fermions)

Below is the result of the iterative diagonalization of the Wilson chain for     = 4, keeping all the states.

Circles indicate the energy eigenvalues at each iteration. Color of lines indicate the magnitude of the

overlap between the eigenstates at consecutive iterations. Darker (brighter) line means that the 

eigenstate at the previous iteration contributes more (less) to the eigenstate at the current iteration.

impurity

6. Iterative diagonalization
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Iteration produces matrix product states [Weichselbaum2009]

old basis, dimension 

new basis, dimension

local basis, dimension 

for each        , this is                    matrix 

truncation needed!

Wilson's truncation scheme:

(      eigenstates)

Keep only lowest            states of each iteration, Discard the rest!

Justification: 'energy-scale separation": high-lying states affect low-lying ones only weakly, since

terms in perturbation expansion contain 'energy denominators' of the form

Level spacing decreases,                      , number of state increases,  

Suppose chain of length           has been diagonalized numerically. Continue by adding one site at a time.

   Page 12    



Manageable number of states•

Information obtained from all energy scales•

Small energies are very well resolved•

Hamiltonian of each iteration is diagonal:•

Advantages of Wilsonian truncation:

No complete basis set available, since many states are discarded.•

This causes ambiguities in Lehmann sum, which have to be fixed by 'fudging'.•

Problem:

(Solution to problem, to be discussed in a later lecture: construct complete basis from discarded states!)

Energy flow diagrams

Eigenstates at iteration       form a 'Wilson shell':

Define rescaled energies, so that average level spacing is              : 

Plot of versus yields 'energy level flow diagram':

Various 'fixed points' in flow reveal physical 

behavior at corresponding energy scales.

Fig. 5 of [Krishna-murthy1980a]

strong coupling
regime

local moment
regime

empty orbital
regime
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NRG-I.7

Iteration produces matrix product states [Weichselbaum2009]

At each iteration:

Hamiltonian in the Hilbert space spanned by  

Diagonal:

Create the identity tensor

for the product space

Update the Hamiltonian             

for the product space, and 

rescale by multiplying

Add the hopping term between site           and    

Add on-site term at site     , if any

(notes by Seung-Sup Lee)7. Iterative diagonalization: MPS details
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Diagonalize the Hamiltonian

"Keep" the        lowest-lying eigenvalues and their corresponding eigenstates

Kept Discarded

Shift the energy eigenvalues so that 

the lowest value is 0 (for the rescaling 

at the next iteration)

Diagonal

Use the tensors              and                for the next iteration

Color of the line connecting                 and   

is given by

Iterative diagonalization result 

with rescaling, shiting, and truncation:
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