Inhaltsbereich
Tensor Networks for Many-Body Physics 2025 – Lecture notes
- Overview
- Lecture notes
- Tutorials
- References
- Videos
Lecture Notes: (Klick on the small grey triangles for dropdown lists of subtopics.)
Lecture | Date | Notes | Pages | Topic |
Lectures 21-24 on NRG are copy-pasted from lectures 13, 14, 17, 18 of the 2023 Tensor Network Course. The corresponding videos can be found here. | ||||
L24 | 15.06.23 | pdf |
NRG-IVNRG-IV.1NRG-IV.2 NRG-IV.3 NRG-IV.4 |
NRG IV: Spectral function, fdm-NRG1. MPS notation for discarded/kept states2. Complete many-body basis 3. Full-density-matrix NRG (fdmNRG) 4. Spectral functions for SIAM |
L23 | 14.06.23 | pdf |
NRG-IIINRG-III.1NRG-III.2 NRG-III.3 NRG-III.4 NRG-III.4 |
NRG III: Thermal and dynamical quantities1. Thermodynamic observables2. Lehmann representation of spectral functions 3. Single-shell and patching schemes 4. Graphical notation for basis change 5. MPS notation for discarded/kept states |
L22 |
07.06.23 | pdf |
NRG-IINRG-II.1NRG-II.2 NRG-II.3 NRG-II.4 NRG-II.5 |
NRG II: RG flow, fixed points1. General RG concepts2. NRG iteration scheme from RG perspective 3. Uncoupled bath Hamiltonian: fixed points 4. Kondo model: fixed points and RG flow 5. Anderson model: fixed points and RG flow |
L21 |
31.05.23 | pdf |
NRG-INRG-I.1NRG-I.2 NRG-I.3 NRG-I.4 |
NRG I: Numerical Renormalization group - Wilson chain1. Single-impurity Anderson model2. Logarithmic discretization 3. Wilson chain 4. Iterative diagonalization |
L21 | 24.06.25 |
PEPS-IPEPS-I.1PEPS-I.2 PEPS-I.3 PEPS-I.4 |
PEPS I: Projected entangled-pair states1. Motivation and Definition2. Example: RVB state 3. Example: Kitaev's Toric Code 4. Example: Resonating AKLT state |
|
L20 | 16.07.25 | TRG-II>TRG-II.1TRG-II.2 TRG-II.3 TRG-II.4 TRG-II.5 TRG-II.6 |
TRG-II: Graph-independent local truncations (Gilt)1. Motivation2. Why is TRG insufficient? 3. Environment spectrum 4. Gilt: Graph-independent local truncations 5. Gilt-TNR 6. Benchmark results |
|
T07b | 11.07.23 | Tutorial: NRG II: Finite-size spectra, static correlations (continued) | ||
L19 | 10.07.25 | TRGTRG-I.1TRG-I.2 TRG-I.3 TRG-I.4-7 |
Term projects + Tensor renormalization group (TRG)1. TRG for 2D classical Ising model2. Variational uniform MPS (VUMPS) 3. FPCM (Fixed Point Corner Matrix) 4. Related approaches - TRG for honeycomb, TRG for quantum lattice models, Second renormalization (SRG) of tensor network states, Core tensor renormalization group (CTRG) |
|
T07a | 04.07.23 | Tutorial: NRG II: Finite-size spectra, static correlations | ||
L21 | 24.06.25 | PEPS-IPEPS-I.1PEPS-I.2 PEPS-I.3 PEPS-I.4 |
PEPS I: Projected entangled-pair states1. Motivation and Definition2. Example: RVB state 3. Example: Kitaev's Toric Code 4. Example: Resonating AKLT state |
|
L18 | 03.07.25 | TCI.14-17TCI.14TCI.15 TCI.16 TCI.17 |
Quantics TCI14. Computing integrals and functions15. Quantics representation of functions (QTCI) 16. Numerical examples of QTCI 17. Quantics Fourier transform (QFT) |
|
L17 | 02.07.25 | TCI.10-13TCI.10TCI.11 TCI.12 TCI.13 |
TCI: Unfolding tensor to TT (continued)10. Proof of nesting properties11. CI-canonicalization 12. High-level TCI algorithms 13. Relation to machine learning |
|
L16 | 26.06.25 | TCI.7-9TCI.7TCI.8 TCI.9 |
TCI: Unfolding tensor to TT7. Ingredients of TCI form8. Nesting conditions 9. TCI unfolding algorithms (2-site, 1-site, 0-site) |
|
L15 | 25.06.25 | TCI.4-6TCI.4TCI.5 TCI.6 |
TCI: Pivoting, Schur complement, prrLU4. Finding new pivots5. Properties of Schur complement 6. Partial rank-revealing LU decomposition (prrLU) |
|
L14 | 18.06.25 | TCI.1-3TCI.1TCI.2 TCI.3 |
Tensor Cross Interpolation (TCI) I1. Motivation2. Integration of multi-variate functions 3. Matrix Cross Interpolation (CI) |
|
L13 | 12.06.25 | rSVD.1rSVD.1 |
Randomized SVD (rSVD) |
|
L12 | 11.06.25 | CBE.1-4CBE.1CBE.2 CBE.3 CBE.4 |
Energy variance. Controlled bond expansion (CBE)1. Energy variance.2. CBE-DMRG. 3. Shrewd selection. 4. CBE-TDVP. |
|
T06b | 27.06.23 | Tutorial: Wilson chain, TDVP, Variance (continued) | ||
T06a | 22.06.23 | Tutorial: Wilson chain, TDVP, Variance II | ||
L11 | 05.06.25 | TDVP.1-3TDVP.1TDVP.2 TDVP.3 |
Tangent space methods II: TDVP, energy variance1. 1-site TDVP2. 2-site projectors 3. 2-site TDVP |
|
L10 | 04.06.25 | TS-I-5TS-I.1TS-I.2 TS-I.3 TS-I.4 TS-I.5 |
Tangent space1. Motivation: why is tangent space useful?2. MPS canonical forms 3. Kept and discarded spaces 4. Kept and discarded projectors 5. Tangent space projector |
|
T05a | 06.06.23 | Tutorial: DMRG II: 2-site ground state search |
||
T04b | 01.06.23 | Tutorial: DMRG I: 1-site ground state search (cont.) |
||
L09 | 28.05.25 | DMRG-IIDMRG-II.1DMRG-II.2 DMRG-II.3 DMRG-II.4 |
DMRG II: Original DMRG, tDMRG, finite temperature (XTRG, purification)1. Original DMRG2. tDMRG 3. Exponential tensor renormalization group (XTRG) 4. Purification |
|
L08 | 21.05.25 | iTEBD.1-2iTEBD.1iTEBD.2 |
iTEBD: Infinite Time-Evolving Block Decimation1. Vidal's Gamma-Lambda notation2. Basic iTEBD algorithm |
|
T04a | 23.05.23 | Tutorial: DMRG I: 1-site ground state search |
||
L07 | 15.05.25 | DMRG-IDMRG-I.1DMRG-I.2 DMRG-I.3 DMRG-I.4 |
DMRG I.1-4: Density Matrix Renormalization Group - ground state search1. Single-site optimization2. Lancos Method 3. Excited states 4. Two-site update |
|
T03b | 16.05.23 | Tutorial: SVD, MPO, Diagonalization (cont.) |
||
L06 | 14.05.25 | MPS-IVMPS.9MPS.10 MPS.11 MPS.12 |
MPS.9-12: Matrix product operators9. Applying MPO to MPS yields MPS10. MPO representation of Heisenberg Hamiltonian 11. Applying MPO to mixed-canonical state 12. MPS representation of Fermi sea |
|
T03a | 09.05.23 | Tutorial: SVD, MPO, Diagonalization |
||
L05 | 08.05.25 | MPS-IIIMPS.6MPS.7 MPS.8 |
MPS.6-8: Diagonalization, fermionic signs6. Iterative diagonalization of short spin chain.7. Spinless fermions. 8. Spinful fermions. |
|
L04 | 07.05.25 | MPS-IIMPS.3MPS.4 MPS.5 |
MPS.3-5: Canonical forms3. Left- and right-normalized states.4. Canonical MPS forms (left, right, site, bond). 5. Basis change, projectors |
|
T02b | 02.05.23 | Tutorial: Tensor network basics (cont.) | ||
L03 | 30.04.25 | MPS-IMPS.0MPS.1 MPS.2 |
Matrix Produc States (MPS).0-2 Basics0. Reshaping generic tensor into MPS form.1. Iterative diagonalization 2. Overlaps, matrix elements. |
|
T02a | 25.04.23 | Tutorial: Tensor network basics | ||
T01 | 20.04.23 | Tutorial: MATLAB 101 |
||
L02 | 24.04.25 | TNB-IITNB.4TNB.5 TNB.6 |
Tensor Network basics II1. Unitaries and isometries5. Singular value decomposition 6. Schmidt decomposition |
|
L01 | 23.04.25 | TNB-ITNB.1TNB.2 TNB.3 |
Tensor Network basics (TNB) I1. Why matrix product states?2. Arrow conventionsTensor network diagrams 3. Tensor network diagrams |