
TNB.0Jan von Delft

Why study tensor networks? Because tensor networks provide a powerful way of compressing information:
Tensors with many legs represent vectors in high-dimensional spaces. If they are compressible, they can be 
expressed through networks of tensors with only a few (2, 3, 4) legs. This representation greatly reduced the 
numerical cost of computations performed with such tensors. 

In quantum mechanics, wave-functions of many-body systems are high-dimensional tensors. Tensor networks 
offer a powerful language for encoding the wave functions of quantum many-body states, and the operators 
acting on them, in terms of contractions of tensors. They encode entanglement between subsystems in the 
bonds linking the tensors of the network.

Recent progress has utilized the notion of the tangent space to a given tensor network state: the vector space 
of one-site variations of the given state. Tangent space methods provide a convenient framework for describing 
small changes of a given reference state (e.g. during energy minimization or time evolution).

More generally, any function of many variables can, via discretization of the variables, be represented as
a high-dimensional tensor. If this tensor is compressible, the function can be expressed through a tensor network.
Then standard operations on functions, such as addition, multiplication, integration, convoulation, Fourier 
transformation, can all be performed using tensor network methodology, often at greatly reduced numerical costs.

This course will provide an introduction to tensor networks and tangent space methods, and how they are 
used to compute ground states, time evolution, dynamical spectral functions, and more generally, 
to compress and manipulate multivariate functions.

Course outline:

Tensor network basics (TNB)1.

Matrix product states (MPS)2.

Density matrix renormalization group (DMRG) 3.

Tangent space (TS)4.

Time evolution: time-dependent variational principle (TDVP)5.

Controlled Bond expansion (CBE)6.

Dynamical correlators (DC)7.

Tensor cross interpolation (TCI)8.

Two-dimensional tensor networks (PEPS)9.

MPS

References: consult the bibtex file TensorNetworkLiterature.bib on course website → References

These lecture notes are based on a course on 'Tensor Networks' taught at Ludwig Maximilian University,  
summer semester 2023: for lecture notes, tutorial exercises and videos for that '23tn', see:
https://www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_23/tensor_networks_23/index.html  

In the present course, I will occasionally reference parts of the tn23 course, e.g. 
tn23:L01.3 refers to lecture L01, part 3. Its video, numbered 01.3, can be found here:

Course website is on Moodle: 
https://moodle.lmu.de/course/view.php?id=40399

25tn:Tensor Networks 
for Many-Body Physics and Beyond: 
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https://www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_23/tensor_networks_23/videos/index.html

First few lectures:Tensor networks basics (TNB)

Why matrix product states (MPS)?1.

Covariant index notation2.

Tensor network diagrams3.

Unitaries and isometries4.

Singular value decomposition5.

Schmidt decomposition6.
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Local Hilbert space of site     :

Examples:

local dimension 

Local product basis for full system of      sites (convention: add state spaces for new sites from the right):

identifies length of chain

Hilbert space for full chain:

General quantum state:

wavefunction
arbitrary linear combinations

Specifying    involves specifying                   , i.e. different complex numbers.

is a tensor of degree
graphical representation

summation over
repeated indices implied

TNB.1

Consider a generic quantum chain model  

with       sites, enumerated by an index 

number of legs

Dimension of full Hilbert space        : (# of different configurations of        )

Schrödinger equation:
operator . ket = ket

In local basis: 

Schrödinger equation:

matrix . vector = vector

When          and           are viewed as matrices and vectors, they have exponentially many components.

Direct diagonalization not possible for                            'Curse of dimensionality' !

implicit Einstein summation           over repeated 'local indices'   (indicated diagrammatically by connecting legs) 

spin s:

spinful fermions:

1. Why matrix product states?
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Fact (F1): any                                  can expressed as a 'matrix product state'  (see MPS.1):

Fact (F3): for 1-dimensional systems, ground state wave functions of 
local Hamiltonians with short-ranged interactions are compressible. Therefore, 
they can be encoded using MPS with only polynomial costs in system size:

Memory footprint of MPS is where 

implicit Einstein summation            over repeated 'virtual bond' indices                        (indicated diagrammatically by connecting legs) 

A generic               has an exponentially large rank, 

But there are exceptions:          is called compressible if its rank does not grow exponentially with       .  

'rank' of 

MPS representation reveals entanglement properties of           :  Link between neighboring sites 

encodes the entanglement between them

Fact (F2): Entanglement entropy between sites      and          [see (TNB6.16)]:

(see TNB.6)

'factorized' or 'unfolded'
dimensions 

Fact (F4): For Hamiltonians with only local interactions, the ground state entanglement entropy 
between subsystems       and         is governed by an 'area law' Hastings2007,Eisert2010,Cirac2021]:

bond dimension needed for (14):

bond dimension needed to encode      grows exponentially with     : 

Intermezzo: (F3) follows from 'area law'.

huge space of all 
tensors of degree   

tiny space of compressible tensors

'reduced density matrix' for     : and 

'Entanglement entropy' of     and     :
eigenvalues of

To obtain reduced density matrix of      (or    ), trace out     (or      ):

Divide system into two parts,      and    . Suppose        has linear dimension      .

Consider quantum system in pure  state           , with density matrix 

number of sites 
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Fact (F4): any Hamiltonian                                      can be expressed as a matrix product operator (MPO):  

implicit Einstein summation            over repeated 'MPO bond' indices                           (indicated diagrammatically by connecting legs) 

dimensions 

Fact (F5): for generic short-ranged Hamiltonian, MPO bond dimension  is 
thus, such Hamiltonians are 'compressible'. e.g. 3 or 5

Application of MPO to MPS yields another MPS: 

with composite indices, 

of increased dimension:

Computational cost of evaluating MPO . MPS  is 
i.e. not exponential but polynomial in system size!  This is why we love working with MPOs and MPSs.
However, since bond dimensions grow with every MPO application, we need to truncate bonds.
To do this with minimal information loss, use singular value decomposition (SVD), see TNB.4.

between subsystems       and         is governed by an 'area law' Hastings2007,Eisert2010,Cirac2021]:

(area of boundary of        )

in 3D for gapped system

in 2D for gapped system

in 1D for gapped system

in 1D for gapless system

bond dimension needed for (14):

For 1D cases, bond dimension does not grow exponentially with system size     
ground state wave functions are compressible!

or
unitary isometry
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Linear combination of kets:

Coefficient matrix = overlap:

Linear combination of bras:

Coefficient matrix = overlap:

In all these overlaps
(3,5,7,9): ket indices:  sitting low on            or        , depicted by outgoing arrows

If direct products are involved:

Coefficient matrix = overlap:
note bra order: opposite to that of kets in (5)

If direct products are involved:

Coefficient matrix = overlap:

bra indices:  sitting high on          or         , depicted by incoming arrows

Operators:

index-reading order

index-reading order

Premise: in Linear Algebra, vectors and dual vectors are notationally distinguished by lower/upper 
placement of indices ('covariant notation').  E.g. to describe linear transformation applied to basis vectors: 

basis vectors:                                            transformed vectors:

See, chap. L2 & L10 of  "Mathematics for Physicists", Altland & von Delft, www.cambridge.org/altland-vondelft

In Quantum Mechanics, kets are vectors, bras are dual vectors, but low/high index placements are not 
customary. However, I do find it useful to do so when working with tensor networks, where very many indices 
arise, and high/low placements help to remember which indices can be contracted. 
In diagrams for coefficient tensors, high/low indices on coefficient tensors are distinguished by in/out arrows. 

dual basis vectors:                               transformed dual vectors:

Indices of coefficients are placed such that summed indices come in high-low pairs. 

Shorthand notation for  kets:                            (basis vectors),                               (transformed vectors)

Shorthand notation for  bras:                           (dual basis vectors),                         (transformed dual vectors)

shorthand for

shorthand for

add new spaces on the right

TNB.2

Mnemonic for arrow directions:  'airplane landing':  
bra flying in high (in air), ket rolling out low (on ground).

2. Arrow conventions
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Addendum: Covariant index notation [optional]

Index and arrow conventions below, adopted throughout this course, are really useful, though not (yet) standard.

For exposition of covariant index notation, see chapters L2 & L10 of 

"Mathematics for Physicists", Altland & von Delft,  www.cambridge.org/altland-vondelft

Premise: in Linear Algebra, vectors and dual vectors are notationally distinguished by lower/upper 
placement of indices ('covariant notation'). In Quantum Mechanics, kets are vectors, bras are dual 
vectors, and in the physics literature, they are distinguished by shape of brackets            vs.         . 
Nevertheless, it may be useful to additionally distinguish them by low/high placement of indices. Reason: 
their coefficients then inherit distinguished high/low index placements too, which is useful for knowing 
which indices can be contracted -- in particular when converting algebraic notation to tensor network 
notation.      

In the introductory parts of this course, we will therefore use covariant notation and carefully 
distinguish low/high indices. This is not standard in QM or in the tensor network literature. But I believe 
that it is pedagogically useful to use notation that emphasizes vector space / dual vector space 
structure of QM not just for vectors / dual vectors, but also for coefficients.

Vector space, dual space (reminder)

Let       be a complex vector space, with elements 

Its dual space,         , is defined as the set of all linear maps          of        to the complex numbers:

with 

If         is equipped with a scalar product, 

there is a canonical identification,        ,  between the elements of       and           :  

such that 

Quantum mechanics has this vector space/ dual space  structure: = Hilbert space 

, dual vectors 

they map vectors to complex numbers via 

vectors are denoted 

dual vector vector complex number

For example, implies that 

All properties of the map             follow directly from those of the complex scalar product        . 

with , etc.

ovebar denotes complex conjugation

, scalar product:
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Indices labeling components of vectors (kets) sit high:

Repeated indices (always high-low pairs) are summed over, summation        is implied. 

Indices labeling linear combinations of kets sit low:

Note: for             the index        identifies components of kets, hence sits high
                                        the index        identifies basis kets (vectors), hence sits low          

Indices labeling vectors (kets) sit low. E.g. basis kets: 

Indices labeling dual vectors (bras) sit high. E.g. basis bras: 

Suppose                 form orthonormal basis:

Indices labeling components of dual vectors (bras) sit low:

Complex conjugation [(14) is dual of (11)]:

Indices labeling linear combination of kets sit high:

Complex conjugation  [(16) is dual of (12)]:

Note: for             ,  the index        identifies basis bras (dual vectors), hence sits high
                             the index        identifies components of bras, hence sits low

(Hermitian 
conjugation!)

Overlaps

Vectors (kets)

Dual vectors (bras)

vector space

dual space

Unitarity

they map vectors to complex numbers via 
dual vector vector complex number

with , etc.

Therefore, covariant index notation for vectors/dual vectors can also be used for kets/bras, as follows:

definition

definition

Linear algebra perspective
dual vector maps vector to number
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Suppose that                  form orthonormal basis, too:

Combined:

Hence A is unitary:

Operators

Therefore , index raising and lowering using metric does not change numerical value of object:

For orthonormal basis, the 'metric' is trivial:

In quantum mechanics, we can always choose an orthonormal basis, so that metric is trivial, and then it is 
not necessary to distinguish between high/low indices. Hence this is typically not done in QM literature.

Nevertheless, for tensor networks, the position (high/low) of a tensor index does carry useful 
information: it reminds us that the tensor carrying the index is a coefficient of a ket (a vector) or bra (a dual 
vector) respectively. In other words, index positions on tensors carry structure-revealing information that is 
not kept track of in bra-ket information. (There, structural information is carried in the notation for states,         
           vs.        , but not for their coefficients).  

When drawing tensor network diagrams for many-particle systems, this information is a useful 
guide for keeping track of allowed contractions: only high with low index! 

Unitarity

Two orthonormal bases are related by a unitary transformation.

Completeness

Covariant notation works nicely!  So why is it not commonly used in quantum mechanics?

raising: lowering:
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[Orus 2014, Sec. 4.1] TNB.3

'tensor' = multi-dimensional array of numbers
'rank of degree' = number of indices = # of legs 
'dimension of leg' = number of values taken by its index,  

degree-0:   scalar

degree-1:   vector

degree-2:   matrix

degree-3:   tensor

Index contraction: summation over repeated index

= 'bond dimension' of index 
graphical representation of matrix product

(depends on context, can be different for each index; the subscript     on       is often/usually not written explicitly)

'open index' = non-contracted index     (here      ,       )

'tensor network'  = set of tensors with some or all indices contracted according to some pattern

Examples:

scalar dual vector    vector

Trace of matrix product:

overbar denotes 
complex conjugation

[Reminder: Conventions for using arrows and distinguishing between super- and subscripts ('covariant 
notation') are explained in TNB.2. In short: on coefficient tensors, incoming = high, outgoing = low. Use 
of covariant notation is not customary in tensor network literature - most authors write all indices low.] 

3. Tensor network diagrams
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Cost of computing contractions

Result of contraction does not depend on order in which indices are summed, but numerical cost does !

Example 1: cost of matrix multiplication is

Cost = 

For every fixed        and           (                 combinations), sum over          values of 

(simplifies to           if all bond dimensions are =     )

Example 2:

contracting 

independent of      !!

Finding optimal contraction order is difficult problem! In practice: rely on experience, trial and error…

First contraction scheme has total cost                    ,  second has                      !!

contracting contracting 

contracting contracting 
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