10. Proof of nesting properties [Fernandez2025, App. A.3] TCIL.10

Below, we prove two important nesting properties that were stated in (TCIL.8

Pivots are nested w.r.t. Tz if they are left-nested up to £ ~1 and right-nested up to /+

Then’,vthe TCI form |s[ex]act on the one-dimensional slice TL —
* U = F e I<e <D, 8, T >3 0)
l I ] 1 ° L~ s
L8le)8]y,, Gl DOy, g “

If pivots are fully nested, TCI form is exact on every 1:2 and B , i.e. on all slices used to construct it,

thus it is an interpolation. €Y
6 - (L ol
Foreach { define the matrices A 2 = T: P, , B, = ?, ];_‘. (3)
A —1 p-1

6y _ £ 6 Bg

[ﬂfy]i i —ql—o— [BLI]J' ; _._qi’; )
212 le Jon 2] 1“ 0
L. T I, 7 /%

If left (row) indices of []or right (column) indices of B are restricted to pivots, they yield Kronecker symbols:

If 1, 9 €7 then %] = §. i @ e hen [ 6
0 g [Q ]iz—liz Slwu@c‘ W ! I 2®lex 72 the Bl 1o I % -IJZ,-H
left row index = pivot g right column index = pivot J'Q-‘ILH )
Reason: \Z and F,_, areslices of Tl :
(6)
[sss] ()7 rewceato (331)(520) "= 4 (380) (D) researo (353)7(59) = A
B AZ, TP =1 PTAZ, J)=1
(TCL.3.22) (TCL.3.23)
If pivots are left-nested up to /, T, LL,¢ LLptLT,
and if I!Z is an index from a row pivot list, it 7, = (5 &, i)el, #
! 1)
then the same is true for any of its subindices , for ¢'< -
is true for any of its subindi ,z re<f: then 7, ¢ T,
(Because left-nested means: if you remove last index of an element of a ‘
row pivot list, '7',"t € I’z , You get an element of shorter pivot list, ?.L— € I’.{—| J)
If pivots are right-nested up to /, B> > -7.¢' s> T > Towe
and if JP_ is an index from a column pivot list, ) if Jz = (¢ v O , 61.) € ]‘ 8)
then the same is true for any of its subindices, e forg'>4 : _
then J. € J
(Because right-nested means: if you remove first index of an element of a L 2
column pivot list, j[ 3 ‘7£ , You get an element of shorter pivot list, Jen € ‘71+: 2
Iterative use of (5), starting from F; A, or B, B , - then yields a telescope collapse:
If T,cT,c¢ 7, and y=(5, . §lel, , then: If J,> >7J,5J. and - (5, ., )¢ ], , then:
A Ay Ay = - By BrBe
- =[AT' AV = 5§ _ _ipoi.. g7 . ' (9)
1 1)',\.1 1y D [ ! t ]hl 833) JL‘JI [Bz B.* ]2 ol': JZ—:_I.J //:.I.J 1

./
JL % 7 P’ % Tr-1 0c
10
&s),1! // \ ‘ 811 ()
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Important: such collapses do not apply for all configurations, only for pivots from left- or right-nested lists.
. . g [ 3 6"’
Thus, As and Bs are not isometries, % [ﬂfJf AS ]ﬁ, +d. , % [52 5% JJ'j ¥+ 5J~IJ~ (10)

because 2  -sum involve non-pivot configurations.

Now we are ready to prove three important facts:

1-site nesting w.r.t. Te : If pivots are nested w.r.t. -Iz , then £ is exact on the slice T,Q . ()
Proof: let 5« 1, xS,xJ, be any configuration from which Tz is built: T,=F (I S, l"\
(TCL.7.12) IFI‘ITI
F"‘F — [Tf'lpl—l e ngtrlpf : O'tp Tgo-zi%—l . pE}] TEC ]11 (I?_) I< < I,;—, S! Jl+l> >J["I
(5, Gy 1 Ty pO+l e
:[Al AL T, By B, ]11 u3)
Ay Ay T By Bg T, _
R i R o i =[1']. - =F5 (%)
11 g Ty g Te—1 1 Ter1 T o
a1 O¢—1 O¢ U4l or Oy
(9) lq) Through repeated use of (9), a sequence of
= -1 i telescope collapses pin all internal summations
-1 Y Jc’f'i L4 over primed indices to corresponding barred indices.
0-site nesting w.r.t. Po: 1f pivots are nested w.r.t F} , then F is exact on the slice Bz A
Proof: since 1, « T, and J,, > Tees 2|s a subslice of both T, and l %= F(I ,,,)
But F is exact on both, hence F is exact on fo - Ie<T, 7.5 ],
Moreover, F ( I, 7 ) , viewed as a matrix with elements [EI = ? , has
[ 2% 1 Lol
= L J 241 9 J 2+
rankl F(Z, 7, )1 = dm(F) =%, .

2-site nesting w.r.t. e =  If pivots are nested w.r.t ITE , then the local and global errors on that slice are equal.

Proof: let 5& T, xS, xS, «J,, beany configuration from which [Ty is built: = F(I,,S,,Sz+l )

L4
(TCL7.11)
Then, by definition: Fz=[IL]7 (e) Ig- <3, 8 S, > >7,,
(TCI712) _ _
1 Op— oy -1 T
Telescope like (12)-(14) yields: ~ Fgr = [T Py - TP TP Teff P TR (%)
\—————Yf—/ ¢ v
telescope collapse (1‘ telescope collapse
N S S
o [T P Te"'l ]fffl,ﬁu - Trl]g (1)
- : — = - F — 14
(M, - ), = (€-F1s r
local error global error
= Local update reducing local error will also reduce the global error! [cf. (TCIL.9.6)] (z o)
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11. CI-canonicalization [Fernandez2025, Sec. 4.5.1] TCI.11

Any tensor train can be transformed exactly into TCI form at costs ol 13), described uniquely in terms of pivot
lists and corresponding slices of the tensor train. The TCI form corresponds to a particular choice of gauge.

Starting point: F M1 M2 MCE My Ms M, (‘)
anarbitraryMPS o =M o, My asa, (Mg Ja, 1= g ap Toay ag4T1

/))7‘ o1 o9 Tor

ordinary MPS indices, not multi-indices a4 + (", N &)

First forward sweep: (swallow up 4, indices, generated left-nested row pivot lists)

A
&~ —— not a slice of F, since g, multi-index

- N M, ¢, P'R
Initialize: do exact CI-decomposition of M : T(I_al = »I—Em (2)
not multi-index &\ = multi-index!
_ C, PT'Ri M, Ms M;
Insert (2) into (1): F, = < o - ® - ?a_g am )
lop ] a9 o3 [
Tterate for {27 :
Reshape, do exact CI-decomposition, define tensors (which 'swallow up non-multi-indices via internal summations):
— ~ 1 [cf. (TCL.10.4)] ~
R, 1 My M; c, P ) R Ay Cy Pf_
o aay e e ap T ag i a 1Y i el a i )
ay ayp agp g ae ap
= multi-indices!
row indices x 53 are nested by construction: column indices: 3‘, , 4 ¢ = not multi-indices! (s)
A1 Ac My I lti-indices have been 'swallowed' (&
. — all non-multi-indices have been swallowe
After full forward sweep: Fo = "N n i i,c,l?_l* )
o1 Oc—1 oO¢
row pivot lists are fully left-nested
Telescope collapse property [cf. (TCI.10.9)]:
_ Ay A Ay 3
If and 7, = (5, . §)el,, then: N T =ouw,
71 T2 oy
Therefore, ML is a slice of F : M, = F( ,§A [cf. (TCL10.14)] ®)
All Ce and 11 have full rank when viewed as matrices [C'l]( 06, 4 and U)ll . m
2),60e ,Gg
However, C, and M. may still be rank-deficient when viewed as matrices (C ] or [ﬁ } (10)
7 L 1 (6,0 & 2 6
(68 dy) oL
Backward sweep: (generate right-nested column pivot lists) .
~ M Ceer P7L R
Initialize: do exact CI-decomposition of M, : _?‘C_. = - = 1 Lo - (v)
L ie1l 1 ic1 Joo odc—all
or oc
ng: 71. <= all multi-indices!

K, and PL.' being subslices of ML ,areslicesof F,namely: R =F(I, §) and T, = F(Z,..T) (12)

Make identification T = R )
3
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Tterate for £ < /- :
Reshape, do exact CI-decomposition, define 'Ije =K 1) tensors (which are slicesof & )and § 2 :

~ _ [cf. (TCL.10.4)]
A Gy Ne Coa Py Re=Ty By P T ()
ie—loqe W jey1 ff—lgigjfﬂ w1 ge et Jiejeﬂ ) Je alejf+1 o e ifflgiejfﬂ
J,Q 794! '7( ].eu
S - . /s
row indices: column indices Z [ Szx‘Zn are nested by construction: .71 >'71,+| ( )

2
left-nesting may be broken if pivots are discarded

Rl is a slice of F (will be demonstrated below), hence we rename it TIL =R 2

()
After backward sweep up to site {, and further all the way to site [, :
F Aq Ag_l ft\“';y Bf+1 B, iﬂ";l By Br
LD FTE P, I S S _)‘TLF]é P Pl ™
a1 J¢y_1 O¢ Of+1 Or a1 a9 ar
\72_“ > > \7‘” 72 2 >\7£,, column pivot lists are fully right-nested
Telescope collapse property [cf. (TCI.10.9)]:
T > >7 dJ;=1(5, .. §),then: - Pen e =6 it
If  Jga L+ AN JZ ) o0y 9,7 then: m+1 ],c:PJTP_; ] if Je € *71 )
37 Gr10¢
Therefore, Nf is a sliceof F : NB = F( lgb jl“\ [cf. (TCL.10.14)] (4)
— Ay Ay Ne By B Ny
If o h - — e O R =
€ g Slx ZZH then  F5 10 gl e T jera P dera e P 1 m o)
71 Ty O Tit1 oz e
: — — —v
telescope collapses — S 5] )
, Jetn) Iﬁﬂ

Similarly, Kz and T, _, being subslices of V,,, are slices of F : T,=R,= F( :Sz:]lu\ and 1}_’: F( ']J

(Zl)
Thus, CI-decomposition of UI reveals bond dimension of & for bond f-1, namely X 9= = [72\ (zv

Finally, telescope collapse shows that N/, = F( S,'jﬂ is a slice of F , too, so we identify T, = N, (2y

) Y ~1 _ —
Using B, = Py, T, in(17), we arrive at TCI form:  Fg = [Tlglpl 1T202 ~-PEE1T2£]11 (2¢)

Here, all ingredients are slices of F , labeled by multi-indices.

Each TQ is full rank for both ways of viewing it as a matrix, h;\ o or T ] )
AR (CART
N RINIIY ] ,0,,.]14-1
After full backward sweep, all column pivots are fully right-nested.
But row pivots may not be fully left-nested, since backward sweep may have discarded some row pivots.

To restore full left-nesting, do one more exact forward sweep, using 1-site TCI algorithm (explained in TCI.9).
This will not break right-nesting of columns, since no pivots will be discarded. Final result is a fully nested TCI form.
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12. High-level TCI algorithms [Fernandez2025, Sec. 4.5.2] TCL.12

The various TCI algorithms (2-site, 1-site, 0-cite), decomposition options (CI, prrLU), and pivot search options
(full, rook, block rook, addition of global pivots) can be combined in various ways.

* 2-site TCI in accumulative plus rook pivoting mode is the fastest technique. It requires the
least pivot exploration and very often provides very good results on its own. The accuracy
can be improved, if desired, by following this with a few (cheap) 1-site TCI sweeps to reset
the pivots.

e 2-site TCI in reset plus rook pivoting mode is marginally more costly than the above but
more stable. It is a good default. For small d, one should use the full search, which is even
more stable and involves almost no additional cost if d < 2n, .

» If good heuristics for proposing pivots are available or ergodicity issues arise, one should
consider switching to global pivot proposal followed by 2-site TCI.

* To obtain the best final accuracy at fixed y, one can build a TCI with a higher rank ¥’ > y,

then compress it using either SVD or CI recompression.
o~ [see (TCL.9.10)]
* For calculations of integrals or sums, we recommend the environment mode. In some

calculations, we have observed it to increase the accuracy by two digits for the same com-
putational cost.

Table 2: Computational cost of the main TCI algorithms in xfac / tci.jl.

| action | variant | calls to F,, | algebra cost |

rook piv. | 2-site O(x%dn,ee L) O(x%dn o1 L)

iterate full piv. | 2-site O(y=d“L) O(y°d“L)

full piv. | 1-site O(y*dL) O(y>dL)

full piv. | O-site 0 O(x°L)

achieve full nesting O(x?dL) O(x3dL)

add n,, global pivots (9((2;{ + np)npﬁ) C’)((x + np)3£)
SVD
compress tensor train LU 0 O(x3dL)
CI

Operations on tensor trains

Function composition: j (-f:(x)) construct another TCI: S‘_’. = j( \?3-') ()
Initialize ﬁ; using pivots of Fg‘ then, applying j to each element of Tg < (sliceof ¥g

Subsequently, optimize 32 using 2-site TCI algorithm.

Element-wise tensor addition: ~ given ~ F = M;M,---M; and F = M|M;---M, @)
e =~ = 14 17 17 /" Mo-f 0

element-wise sum: F)=F, +F, = Tr(M; "M, %---M ") M/ = ( é M/O'g) (>
’ ¢

al 1. a3 .
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p o p LIWVL) vy vy ¢ \ 0 Mgagj t

3
Then compress using CI-canonicalization algorithm (see TCI.11). Runtime costs: O([ X+ ’X’) d L) (4)

ranks of F, F

Convolution = matrix-vector contraction:

[ gt ) bt = 268 Fa = _

Standard tools for compressing the result:
(i) Fitting exact result to MPS with reduced bond dimensions;
(ii) Zip-up compression, where MPO-MPS contraction is performed one site at a time.

For both cases, one can use either SVD or(CI/prrLU (favorable for large o , when one can use rook search)

Runtime costs of both: (9(')("/\0(1) for 'Xg'-——’Xf = ')(jz;_- = X

The 7(1' scaling is currently a dominant bottleneck! Mitigation attempts include

- parallelization: use different 'workers' to treat different parts of MPO-MPS contraction; HHiH
combine results at the end [Stoudenmire2013]. HH i

- 'patching': divide domain of function into different patches, use different resolutions
for different patches, according to needs. Adapt patch sizes dynamically
while learning TCI decomposition. [Grosso2025]
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13. Relation to machine learning [Fernandez2025, Sec. 4.8] TCI.13

Traditional machine learning approach to 'learning' a compressed representation F; of F;_.
(i) draw 'training set' of configurations/values: ? g , FG%

(if) design a 'model' f~ (e.g. deep neural network);

(iii) fit model to training set by minimizing error || - F|| w.r.t. some norm, typically using stochastic gradient descent.

(iv) use model to evaluate F§ for new configurations.

TCI implements this program with some important differences / special features:

(i) TCI does not use a 'training set'; instead it actively requests configurations likely to bring most new information
(‘active learning").

(ii) The 'model' is not a neural network but a tensor train (highly structured model). If F is compressible, it can be
approximated by low-rank F , with exponentially smaller memory footprint. Learning requires << o~ samples.

(iii) The TCI learning algorithm used to minimize error is very different from steepest descent.
It guarantees error is smaller than specified tolerance T  for all known samples.

”~

(iv) Once F has been found, its elements Fg can be computed for all configurations < .
This is useful if function calls to F5 are expensive. (Then learning fis expensive, but calling fz is cheap.)
Moreover, subsequent operations on ¥  can be performed exponentially faster than on F.
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