Randomized SVD (rSVD) [Halko2011] (highly readable paper!) rSVD.1

Shrewd selection was proposed to avoid an expensive SVD: pzl-\ H}_SW'ZS
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Optimal truncation can be achieved via SVD; but that has 2s costs, o( o) ;)

[McCullogh2024] pointed out: a more generic approach to avoid an expensive SVD is a 'randomized SVD' (rSVD).

Consider W xw» matrix M. Cost of full SVD: O(M Y Mih(‘*‘,v\)) (my figures assume m < n)
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If we know that we will truncate it to rank K << , ", computing full SVD is wasteful!
rSVD offers a way of finding truncated SVD at costs O ( wm - (ks p\) (?)
LN
target rank oversampling parameter
Definition: 'range' of a matrix is the vector space spanned by its column vectors.
Matrix-vector multiplication yields 'linear combination of column vectors' = 'vector in range of matrix'
g = M7= c; ! ewj‘m) j( - M"jxi = (€)' xj (3)
t columnj of /1 T element | of columnj of M
For a truncated SVD, the range of 14 is the 'most relevant' k. -dimensional subspace of range of M
ﬂ’ = u;«r*;? = Zj (Svlr?\i € «au]e(ﬂ )
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The 'truncated' version of 11 can be found by projection onto the range of u :
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Suppose (R is a good guess for W. Then SVD that truncates ™ can be found cheaply via full SVD of & 11 :
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Key idea of randomized SVD: find good guess for 1 by sampling range of M using random input vectors x

'Range finder algorithm':

target rir;k oversampling parameter
(i) Construct random wx [ 'test matrix' 1 ywith £ = ly { < ™. n ()
(i) Compute M JSL Cost: Olwmw t)  dim(MA) = 4 (1
(iii) Do thin QR-decomposition  MSl = QR ()
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Since columns of SL are random vectors, the columns of ™ SL are very likely linearly independent.
Then, @ has £ columns. They 'explore' (try to 'find') the range of M , thus serve as good guess for U .

'Subsequent factorization': ~ (compare (6)):

(iv) Compute at M (12)
' 1
(v) Perform fullSVDon @ M= HSV and truncate, = MSU+ , from = kq-\s to k singular values.
(13»
(vi) Construct U = @ (1v)
Final result: rSVDof M isgivenby M ~ % ¢ ot (i5)
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Remarks:

1. Total cost: (9( wm-n- ) Sophisticated implementation can yield lower costs, see [Halko2011].
2. Accuracy:
For full SVD + truncation to rank k : M -~ u u" Ml = 5“'
[l I = L, operator norm = largest singular value first discarded singular value of M
Jhep'
For rsVD with { = ks p - Elm-edtul <[+ %_L,E—m]skﬂ

E = expectation value w.r.t. sampling over random test matrices

3. Error probability decreases rapidly when increasing oversampling parameter p :

Plin-adal > [14 aff7. fomfwntls, ) < 67"

In practice, P= S suffices (1 - 3% 5_; = 011704 )

4. Example: M = random matrix with w1 = v = 2eo | rSVD with k=0 . p=°¢
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5. rSVD is advisable in variational contexts, i.e. during sweeps, where small errors made at a given
iteration can be compensated by doing additional iterations.

6. Try using rSVD yourself in your MPS computations! Write a rSVD routine, replace SVD by rSVD.
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