rSVD.1

Shrewd selection was proposed to avoid an expensive SVD:

Goal: truncate $\overline{A}_{\ell}(\nabla) \to \widetilde{A}_{\ell}^{\mathrm{tr}}(\nabla)$ to minimize $C_{1} = \bigcup_{D} \overline{D}_{D} \overline{D}_{d}$ to minimize $C_{1} = \bigcup_{D} \overline{D}_{D} \overline{D}_{d}$

Optimal truncation can be achieved via SVD; but that has 2s costs, $\mathcal{O}(\mathcal{D}^3 d^3)$

[McCullogh2024] pointed out: a more generic approach to avoid an expensive SVD is a 'randomized SVD' (rSVD).

Consider was matrix M. Cost of full SVD: $O(m \cdot n - min(m, n))$ (my figures assume m < n

If we know that we will truncate it to rank k< m, n, computing full SVD is wasteful!

rSVD offers a way of finding truncated SVD at costs
$$O(M \cdot (k+p))$$
 target rank oversampling parameter

Definition: 'range' of a matrix is the vector space spanned by its column vectors.

Matrix-vector multiplication yields 'linear combination of column vectors' = 'vector in range of matrix'

$$\vec{y} = \vec{M} \cdot \vec{x} = \vec{C}_j \cdot \vec{x}_j \in \text{column}_j \text{ of } M$$

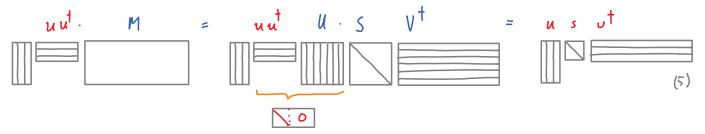
$$y^i = M^i_j \cdot \vec{x}_j = (C_j)^i \cdot \vec{x}_j$$

column j of M

For a truncated SVD, the range of μ is the 'most relevant' k -dimensional subspace of range of M

$$\bar{y} = usv^{\dagger}\bar{x} \implies \bar{c}_{j} (sv^{\dagger}\bar{x})^{j} \in sange(u)$$
column j of u

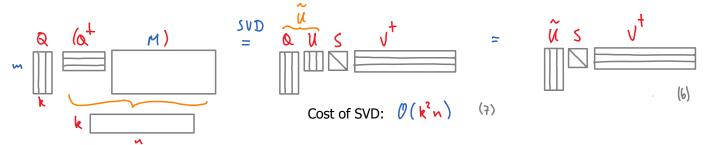
The 'truncated' version of M can be found by projection onto the range of M:



Suppose \bigcirc is a good guess for \bigcirc . Then SVD that truncates \bigcirc can be found cheaply via full SVD of \bigcirc \bigcirc :

 ~ 4 SVD ~ 1

Suppose 💢 is a good guess for 🧒 then symbiliat duncates 👍 can be found theaply via full symbol 😽 📊



Key idea of randomized SVD: find good guess for $\,^{\,u}$ by sampling range of $\,^{\,M}$ using random input vectors $\,^{\,x}$

'Range finder algorithm':

target rank oversampling parameter

(i) Construct random
$$N \times N$$
 'test matrix' N , with $N = N \times N$ (*)

(ii) Compute
$$M\Omega$$
 Cost: $O(m \cdot n \cdot l)$, $dim(M\Omega) \simeq l$ (1)

(iii) Do thin QR-decomposition
$$M\Omega = QR$$

Since columns of Ω are random vectors, the columns of $M\Omega$ are very likely linearly independent. Then, Ω has ℓ columns. They 'explore' (try to 'find') the range of M, thus serve as good guess for M.

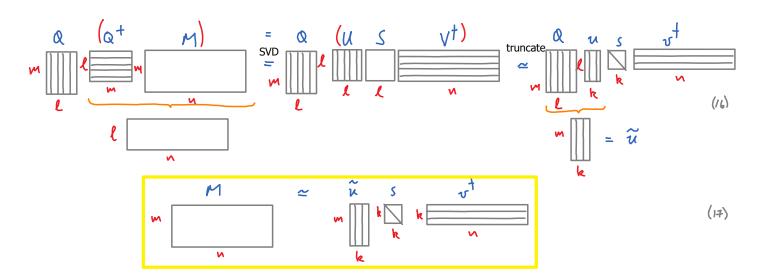
'Subsequent factorization': (compare (6)):

(iv) Compute
$$Q^{\dagger}M$$

(v) Perform full SVD on $Q^{\dagger}M = USV^{\dagger}$ and truncate, $\simeq uSV^{\dagger}$, from L = k + p to k singular values.

(vi) Construct
$$\hat{u} = Q_{u}$$

Final result: rSVD of
$$M$$
 is given by $M \simeq \hat{u} \circ \sigma^{\dagger}$



- 1. Total cost: () (M. M. () Sophisticated implementation can yield lower costs, see [Halko2011].
- 2. Accuracy:

For full SVD + truncation to rank k: $\parallel M - u u^{\dagger} M \parallel = S_{k+1}$

 $\| \cdot \| = \ell_1$ operator norm = largest singular value

first discarded singular value of M

For rSVD with $\ell = k + p$: $E \| M - \alpha \alpha^{\dagger} M \| \leq \left(1 + \frac{4\sqrt{k+p}}{p-1} \sqrt{m_i m_i m_i m_i} \right) S_{k+1}$

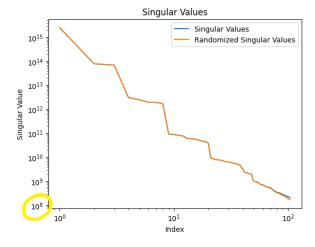
= expectation value w.r.t. sampling over random test matrices

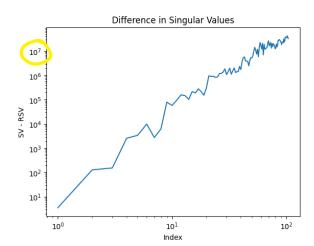
3. Error probability decreases rapidly when increasing oversampling parameter p:

P(||M-QQ+A|| > [1+9/k+p. [min {m,n}] | Sk+1) < 6 · p-P

In practice, p = 5 suffices $(1 - 3 \cdot 5^{-5} = 0.11704)$

4. Example: M = random matrix with M = M = 200, rSVD with k = 100, p = 5





- 5. rSVD is advisable in variational contexts, i.e. during sweeps, where small errors made at a given iteration can be compensated by doing additional iterations.
- 6. Try using rSVD yourself in your MPS computations! Write a rSVD routine, replace SVD by rSVD.