
TCI.7

Goal: unfold given tensor to TT via repeated CI factorizations (either CI or prrLU) into 'TCI form':

Defining characteristics of this decomposition: it is built only from one-dimensional slices of 

(on which all tensor indices       but one are fixed) TCI algorithms use only local updates of these slices.

To be systematic, we introduce some bookkeeping conventions:

External index                                       takes        different values from set  

= set of row multi-indices up to site      ;                           has the form  

= set of column multi-indices from site    upwards;              has the form  

[Fernandez2025, Sec. 4.1]

= full configuration space.   A full configuration                   takes the form  

= concatenation of complementary multi-indices.

For each                          , we define a list of  'pivot rows'                    and list of 'pivot columns'                      .             

row multi-index = list of indices

column multi-index = list of indices

e.g. , for  Also: , with  ( )  = empty tuple. and          are  lists of lists:

For each CI factorization, say along bond      , the tensor is viewed as a matrix, with 

column index                               with dimension(   ) =  

CI factorization  

with pivot matrix 

column-pivot list 

external indices          are fixed,
internal bonds represent sums over pivot lists:

Dimensions of    ,   are generically large, 'top-down' CI factorization is impractical. Instead, use 'bottom-up' approach: 
start 'TCI Ansatz' (1) with small pivot matrices, increase their size via 'sweeps' until desired tolerance is reached. 

row-pivot list     Note: all ingredients carry bond index    .

row index                               with dimension(   ) =          

recall (TCI.3.18)

7. Ingredients of TCI form
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Now define zero-, one-, and two-dimensional slices of input tensor     :

'pivot matrix'        (zero-dimensional slice): 

(k-dimensional slice has k free indices)

with elements 

square matrix of dimension 

3-leg tensor          (one-dimensional slice, with free index     ):

with elements 

For fixed     , we define the matrix 

4-leg tensor (two-dimensional slice, with free indices              ):

with elements 

With these definitions, the 'TCI approximation'        of           is defined as

with independent sums over all row multi-indices               and column multi-indices             , for     

(12) defines the 'TCI form'. It is fully defined by       and       tensors, i.e. by slices of    . These can be constructed if 

(i) one knows the pivot lists                                                    and

(ii) can read out / evaluate / compute the input tensor        for any configuration  

Any tensor train can be converted exactly into a TCI form (see TCI.   ).

configurations defined by pivot lists on the left
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TCI.8

For any bond           

is nested w.r.t. to            , denoted by                   if   

Then, removing last index of any element of        yields element of            , 
i.e.         'descends from'               .     

left-nested row-pivot lists

is nested w.r.t. to            , denoted by                   if   

Then, removing first index of any element of        yields element of            , 
i.e.         'descends from'                   

Moreover, then          is a slice of      : 

right-nested column-pivot lists

Moreover, then         is a slice of      :

Pivots are 'left-nested' up to       if 

Pivots are 'right-nested' up to       if 

Pivots are 'fully left-nested' if they are left-nested up to 

Pivots are 'fully right-nested' if they are right-nested up to 

Pivots are 'fully nested' if they are fully left- and right-nested.  

Pivots are nested w.r.t.          if they are left-nested up to           and right-nested up to            

Then, the TCI form is exact on the one-dimensional slice 

Properties (8) and (10) are very important. For a proof, see TCI.10.

If pivots are fully nested,  TCI form is exact on every         and        , i.e. on all slices used to construct it,
thus it is an interpolation.

Fernandez2025, Sec. 4.2]

The interpolation properties of TCI Ansatz rely on nesting conditions satisfied by its pivot lists. 
Below, we define these nesting conditions. Their relevance will become clear in subsequent sections.

Pivots are nested w.r.t.          if they are left-nested up to           and right-nested up to              

8. Nesting conditions
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TCI.9

Goal: obtain TCI approximation        of given tensor       at specified tolerance,                              ,
by finding a minimal set of suitable pivots.

maximum norm  = |largest element|

[Fernandez2025, Sec. 4.3-4]

Basic 2-site TCI algorithm [Fernandez2025, Sec. 4.3.1]

(1)  Initialization: start with any configuration      
      for which               and construct initial pivot lists from it:

Example:

(2) Sweeping back and forth over                         , perform the following update at each     :

, view it as a matrix     , prrLU-factorize it,Construct 

row indices: 

Example: for              , with pivot lists from (2):

column indices: 

nested by construction:

If old pivots are discarded, i.e. if                     or                       , that may break previously existing nesting conditions:

even if                       it may happen that                   , and even if                it may happen that  

and use new pivot lists                 to update                      .

nested by construction:

Remedy: if full nesting is desired, it can be restored at the end using 1-site TCI algorithm (see TCI.11).

(3) Iterate step (2) until specified tolerance or specified maximum bond dimension is reached.

Nesting properties:

viewed as matrix

suppose CI yields 
two good pivots

by construction because no row pivots 
were discarded

by construction because no column pivots 
were discarded

recall (TCI.3.18)

9. TCI unfolding algorithms (2-, 1-, 0-site)
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Important fact: if pivots are nested w.r.t.        (left-nested up to        and right-nested up to        ), then 

for all (proof: see TCI.10)

Thus, error of approximating        by      is also error, on this 2-dimensional slice, of approximating       by       .

The above algorithm chooses pivots in order to minimize this error. 

When factorizing                               via prrLU, the ingredients on the right are constructed as follows: 
cf. (TCI.6.14-16)

This is what one computes in practice!
Since        and         are lower- or upper triangular, their inverses can be 

computed in stable manner using forward/backward substitution

Pivot update method        'reset' vs. 'accumulative'

'reset' mode: replace all pivots in                   by all pivots in                   (as described above)

'accumulative' mode: don't discard pivots from            , just add new ones from            , typically one at a time.

pro: can discard bad pivots;            con: can break nesting conditions

pro: satisfies nesting conditions;    con: cannot discard bad pivots.

Next, for              , with pivot lists from (6):

viewed as matrix

suppose CI yields 
two good pivots

Nesting properties:

by construction because row pivots 
were discarded

by construction because no column pivots 
were discarded
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Both modes have runtimes                 . 
Accumulative:                  per update, needs      updates to reach rank     .
Reset:            per update, but typically converges within a few updates, independent of  

Pivot search   One  can use full search,         rook search,         or block rook search.

Scaling with     : 
(works well in combination with reset mode)

Adding global pivots

In addition to using pivots found via 2-site TCI algorithm, it may be useful to add 'global' pivots
based on 'outside' information, such as:
- knowledge of configurations where             is very large;
- doing TCI on a tensor       that is very similar to a tensor     whose TCI unfolding       is already known 
Strategy for adding global pivots:  

Ergodicity

TCI is based on exploration of configuration space, so can encounter ergodicity issues --
remaining stuck in subpart of configuration space and not visiting other relevant parts. 
If one notices such issues, initialize pivot search with suitably chosen global pivots: Examples:
- Very sparse tensors, where TCI might miss some nonzero entries;
  remedy: add global pivots for a list of nonzero entries.
- Tensors with discrete symmetries, where exploration may get stuck in one symmetry sector; 
  remedy: add one global pivot per symmetry sector.
- Multivariate functions with very narrow peaks; 
  remedy: add global pivots corresponding to peak maxima.

- split each        as                           for all                        ,

- add these     ,        to the pivot lists

- do prrLU on all pivot matrices       to discard any spurious pivots

- perform a few sweeps using 2-site TCI in reset mode to stabilize the pivot lists.  

Error estimation: bare vs. environment

CI-decomposition on           [cf. (3) above] minimizes the 'bare error',                                  , [cf. (6) above].

Alternatively option: minimize the 'environment error':

with left- and right environments 

Minimizing environment error aims to find best 
approximation of 'integrated' tensor           , 
summed over all indices.  This is useful for computing 
integrals involving integrands with long tails.
Example: see Fig. 7 of [Fernandez2022].

bare error

environment error
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1-site TCI algorithm

Input: a TT in TCI form. General strategy: Sweep back and forth, compressing        using prrLU.

Forward sweep: view 

Useful for (i) compressing a given TCI to smaller rank; (ii) restoring full nesting; (iii) improve
pivots at lower computational cost than 2-site TCI. Limitation: cannot increase bond dimension.

as a matrix                 , prrLU-factorize it,

Backward sweep: view as a matrix                 , prrLU-factorize it, 

After complete forward sweep, pivots are fully left-nested: 

After complete backward sweep, pivots are fully right-nested: 

Backward sweeping may break left-nesting, because taking the subset                   may discard pivots from      . 
To achieve full nesting, do one more forward sweep at same tolerance. This preserves right-nesting, since all 

bond dimensions already meet the tolerance, so last forward sweep removes no pivots from        for   

0-site TCI algorithm       [Fernandez2025, Sec. 4.4.2]

Input: given TT in TCI format.  Sweep through pivot matrices      , prrLU decomposing each to yield updated
pivot lists                 that replace                 .  Main usage: improve conditioning of          by removing
'spurious' pivots. Breaks nesting conditions. 

row indices: 

recall (TCI.3.18)

column indices: 

nested by construction:

recall (TCI.3.18)

row indices: column indices: 

nested by construction:

and use new pivot lists                 to update              .

and use new pivot lists                 to update              .

[Fernandez2025, Sec. 4.4.1]
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