TDVP.1

Time-dependent variational principle (TDVP)

We consider time evolution using 'time-dependent variational principle' (TDVP)
[Haegeman2016, App. B] R
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1. 1-site TDVP

Schrédinger equation for MPS:
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Left and right sides of (4) are structurally consistent. To see this, consider bond {
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Right side of (4) requires tangent space projector. Consider its form (TS-I1.5.25):
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matching structure of (7). Thus, P'* , applied to H ( F(4)) , yields terms of precisely the right structure!

To integrate projected Schrédinger eq. (4), we write tangent space projector in the form (TS.5.26)
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Right side is sum of terms, each specifying an update of one "ff or ?Pé on the left. Eq. (4) can

be integrated one site at a time, by defining the updates through the following local Schrodinger equations
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Their contribution can be integrated exactly: replace C ¢ (+) by C, st )= ¢! H

forward time step
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In bond-canonical form, site { involves two terms linear in A
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backward(!) time step
15 < b
- T
In practice, € ' Hﬂ C! and e "HI E A p are computed by using Krylov methods.
(s
Build a Krylov space by applying H‘Z multiple times to Cp_ , set up the tridiagonal representation {HQL(' Jov

of ”}“ in this béasis, then compute the matrix exponential in this basis, and apply result to C, .
Likewise for HL and A,L.

To successively update entire chains, alternate between site- and bond-canonical form,
(
propagating forward or backward in time with H ; or H: , respectively:
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until we reach first site, and MPS described by

C, (k+22) B, [t+23)... R, (4a7) (23)

The scheme described above involves 'one-site updates'. This has the (major!) drawback (as in one-site
DMRG), that it is not possible to dynamically explore different symmetry sectors. To overcome this
drawback, a 'two-site update' version of tangent space methods can be set up [Haegemann2016, App. C].

A systematic comparison of various MPS-based time evolution schemes has been performed in
[Paeckel2019]. Conclusion: 2-site-update tangent space scheme is most accurate!

A scheme for doing 1-site TDVP while nevertheless expanding bonds, called 'controlled bond expansion (CBE),
was proposed in [Li2022] (see next lecture!).
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2. 2-site projectors P

TDVP.2

The construction of tangent space \V'Sand its projector P(S can be generalized to n sites [Gleis2022a].

We focus on V| = 7 (but general case is analogous). Define space of 2-site variations:

\y 5 = span of all states | l}'? differing from | "LL) on at most 2 neighboring sites
' 2. sites
L 2+2
25
formal definition: = Sram { £ ( ?4 ) [ L e ,‘,ﬁ—l ] 'I (®»
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Recall: L sites
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local 2s projector: Pg_ = Cé:f\D \ \ ¢ X G
Le (1, £~1) (TS-1.4.9) L
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Global 2s projector , such that = (ua (? ) , can be found with a Gram-Schmidt

scheme analogous to our construction of P‘S , see [Gleis2022a]:

compare (TS-I.5.22),
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All summands are mutually orthogonal, ensuring that (P ) = ¢ , and that e = Wy

(65
Alternative expression:
compare (TS.5.26)
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This projector is used for 2-site TDVP (see TS-11.3)

Orthogonal n-site projectors

For any given MPS |/(#] ), full Hilbert space of chain can be decomposed into mutually orthogonal subspaces:
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3. 2-site TDVP (optional) TDVP.3

[Haegeman2016, Sec. V & App. C]

2-site tangent space methods are analogous to 1-site methods, but use a 2-site projector. There is a
conceptual difference, though: the main reason for using 2-site schemes is that they allow sectors with

new quantum numbers to be introduced if the action of H requires this. However, states with different
ranges of quantum numbers live in different manifolds, hence this procedure 'cannot easily be captured in a
smooth evolution described using a differential equation. However, like most numerical integration schemes,
the aforementioned algorithm is intrinsically discrete by choosing a time step, and it poses no problem to
formulate an analogous two-site algorithm'. [Haegeman2016, Sec. V]. In other words: the tangent space
approach is conceptually not as clean for the 2-site as for the 1-site scheme.

Schrodinger equation, projected onto 2-site tangent space, now takes the form (1)
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Right side is sum of terms, each specifying an update of one 1, or '4’,_5 on the left. Eq. (4) can

be integrated one site at a time, by defining the updates through the following local Schrédinger equations:
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Right side is sum of terms, each linear in a factor appearing on the left. Can be integrated one site at a time:
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In 2-site-canonical form, site / involves two terms linear in ‘s’z .ot '-Fé‘ () = H( ', (4) ()
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Their contribution can be integrated exactly: replace L(':S( by Y, t41)= e Mot q’z H «

forward time step
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Their contribution can be integrated exactly: replace % 041 by 1(/1& Jt-1)=e tHy 2 "h “(’c) (8)

backward(!) time step

To successively update entire chains, alternate between 2-site- and 1-site-canonical form,

2s
propagating forward or backward in time with H g Or H‘Z , respectively (analogously to 1-site scheme).

A systematic comparison of various MPS-based time evolution schemes has been performed in
[Paeckel2019]. Conclusion: 2-site-update tangent space scheme is most accurate!
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