Tensor Renormalization Group (TRG) and related TRG-1.1

schemes (VUMPS, CTM, FCTM)

Goal: Compute 2D contractions by coarse-graining RG schemes (instead of transfer matrix schemes)

Applications:

|
Partition functions of [
2D classical models: TM
l
i

—> Qe—> Q> Qe—> Q—
— Q> Q> Qe—> Q—

Imaginary time evolution of
1D quantum models:

[Levin2007] Levin, Nave: proposed original idea for TRG for classical lattice models.
Local approach: truncation error is minimized only locally.

[Jiang2008] Jiang, Weng, Xiang: adapted Levin-Nave idea to 2D quantum ground state projection
via imaginary time evolution. Local approach: truncation is done via 'simple update'. TRG is used to
compute expectation values.

[Xie2009] Jiang, Chen, Weng, Xiang; and [Zhao2010] Zhao, Xie, Chen, Wei, Cai, Xiang:
Propose 'second renormalization' (SRG), a global approach taking account renormalization of
environmental tensor (‘full update'). Reduced truncation error significantly.

[Xie2012] Xie, Qin, Zhu, Yang, Xiang: different coarse-graining scheme, using higher-order SVD,
employing both local and global optimization schemes.

[Zhao2016] Zhao, Xie, Xiang, Imada: coarse-graining on finite lattices.

[Evenbly2019] Lan, Evenbly: propose core tensor renormalization group (CTRG), which rescales
lattice size linearly (not exponentially), but at much lower cost, (9(7(" ) (rather than (9 (% 5) ).

19-TensorRenormalizationGroupTRG-I Page 1



1. Tensor renormalization group (TRG) following [Hauru2018] TRG-I.1

Spin Hamiltonian:  H ({o'}) = Zh(a;,crj) ) A {(;I 6"’-\ = -6 CJ" 6. e 143 = {45—1} ()
(i.j)

® Woia, (®
(i,])

{o} (i,j

Classical partition 7 — Z e PHUOD
function:
{o}

Bond weights: Woo, = e P70 < ( I’Tr WE) - (eﬂ eﬁ) T . )
|

For 2x2 lattice
(with periodic conditions):

b
é) with  dgped = % )
| .

For inifinite 2D lattice, |

— (T e (J e (T ——> (J —

we obtain a 2D tensor network:

W MMT
61 6 - & @ G\‘

o~
o,
o
—

Technical challenge: contract this infinite tensor network!
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Do SVD on T in two different ways: _F ‘
T de o s S :

*) =0

T-0 . & - VFET

\C

(ignore red shading)

(ry
Iterate until | s) converges ]
figure from [Hauru2018]
(reaches fixed point)
— (w0
- =T 7T . (19

Structure of | e can be used to characterize different phases [Gu2009].

Proxy for thermal density matrix: I = @ =) eigenvalues /,\ ol (n)
von Neumann entropy: S =— Y |)\a|10g(|)\a|) (15
Degeneracy counter: X — has different values in trivial ~ [/4)

or non-trivial phases

3

\TRG has issues: does not fully remove local loop correlations (see [Hauru2018]) \
\ computing 'environment' of given site involve tracking all layers of the iteration scheme\
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2. 2D contractions via [Fishman2018] TRG-1.2
Variational Uniform Matrix Product States (VUMPS)

Goal: contract Mx A/ tensor network (for given T); ultimate take NMxM — o00x wo

Partition function:

M
N
Z@M = = (K ) Q)
# = partition function per site
N
each row contributes a factor
N N
Zya N = ZM,,\/'K = . K

&
% becomes =
for M N = o

- XX
Inlimit M — e ,represent Z by an 'upper boundary MPS": W@’@'
MW s s Tp D

Then: x —@——@—@——@» &M 'fixed-point (3

condition'

'row-to-row transfer matrix'

In limit, N — o , @—@——@—@ is translationally invariant. Express it in canonical form:
[ T

_ A A C B A AA B
S B e e R e o
A—-

® R 7¢" & B
>

.= T—Q_V_V M
B
with QI_:C, Ci-)=\ , :E]=]/(s)

Ax

left-normalization overall normalization right-normalization

. A . , e C A g A A
while C, satisfy the 'gauge conditions': —(?— = _O_V_ = To- . (Q)

which must hold on all sites.
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Fixed-point condition (3) implies: (2)

Similarly: (2)

A
Given T ,(6,7,8) are to be solved for —~ ¢ —Q— ) —O— , —p—

So contraction of infinite tensor network has been reduced to self-consistent solution of four equations!
(6,7,8) have the same structure as when finding ground state of infinite uniform system.

So, solution strategy developed for 'variational uniform matrix product states' (VUMPS) applies:

Repeat following three steps until convergence [with A , €, /\, B from previous iteration as input]:

(i): Compute left and right 'environments':

A A 4 A

[each T gives a factor % ]

N
W
for environment with N columns
- = 3 ~ 'K'J = )
ER
(ii) Solve for central tensor and bond tensor:
(7) contracted with . J A k h_.. and expressed through environmental tensors, implies:
< C
N -
P Y = /X C
T Tt [f

_ / (u)

[find dominant left eigenvector]

s v | ) | 1
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L e Dt |

(8), contracted with. /l A ‘\ A .. and expressed through environmental tensors, implies:

(2) A - A
~ 7o o
P NN = o_/\
A
(12)

[find dominant right eigenvector]

At or near fixed point: AC & A K, % M Ke  [this follows by contracting (11) with _A_ or _\_ ]
E.g. for ,2__: C A
C
—= () (1 () A
A —o— = Lo s T = Kk.p— zKL’XA—o—
| _ (\3)

and similarly for L (check yourself!)

C A
(iii) From —(?— ;, —oO— foundin (i), find new that best satisfy (6),

(- C
=—O—F—A & and —Q— = —g—é— (9

i.e. that minimize ” —0— - _O_F_" and “ _(C?—_ _ RTCA)—III 0s
C

i.e. that maximize QI] and [D (/;)

N B* ae A

subject to the isometry conditions (5) on p) . This is a 'constrained optimization' (i.e. tricky!) problem.

A sophisticated 'Riemannian optimization' scheme is described in [Hauru2021], [Li2023]
In [Fishman2018], it was treated the following 'pragmatic' way, that works reasonably well but is not optimal:

To maximize (15) subject to constraints (5), 4
+
C uL SL Ve C M“ SZ v'Z (“’)
do SVDs =—Q— = -|>—<>-<]:‘~ , and - =
+

R Y, i fa) Ur Wk
and choose new v = —-[)——d:\‘ Y and ~ = 'f-‘-\>—4— (1%

-~
Reason: if we then insert (16) and (17) into (15), we obtain simply a sum over all singular values

(the largest number one can hope to get from such a contraction):
Ejj:ml:cbm( w []7]- [m] % - T
(9

Repeat (i), (i), (i) until convergence, measured, e.g., by change in singular values of /\
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3. Fixed Point Corner Transfer Matrix (FPCM) following [Fishman18] TRG-1.3

Ansatz: express infinite 2D network through finite number of tensors: (assume reflection symmetry)

CTM Ansatz:

= (1)
corner transfer
matrix matrix /f
fixed point condition
Iteratively following two 'renormalization 'steps: renormalized t
Y g P corner matrix U™ isometry
(i) SVD the 'expanded corner' to obtain SVD,
renormalized corner and projectors: truncate (2)
N~
= u
(ii) Use projectors to obtain _ e 3 ®
renormalized transfer matrix:
Net result of renormalization:
(©
Q)

(
'divide out four A's and eight C' s
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Enforce translational symmetry on boundary MPS built from A s:

To this end, impose the 'pulling through' gauge condition:

¢

then each @ has the same left neighbor,

for example:
-
I

FPCM imposes this gauge via fixed point conditions, by iterating the following two steps until convergence:

ieuntl A = A , (’l =c

(3

(i) Given IQ , find isometry U" and (symmetric) c' approximately satisfying 'pulling through' gauge condition:
[cf. (6)]
“

o (%)
(ii) Use A andnew U'tofindnew A’ by solving the following fixed-point equation
[with Arnoldi method]:

(how to achieve this: see below)

(It may be necessary to (e0)
9 = @ symmetrize A‘ by hand.)

Details for step (i):

(i.@) Compute initial C: as dominant (normalized) eigenvector of A+R:
As eigenvector of a transfer matrix, this C7.f is positive and Hermitian
(up to numerical errors). Obtain C, as its square root (e.g. via an
eigendecomposition). However, this C, is not yet properly gauged.

(i.b) Obtain U, through polar decomposition of Caﬂ = (A°C,',
Pulling-through condition (1) would hold if C: were equal to C, .

Conversely, “ C,~ C/,l\ quantifies the degree of violation of Eq. (6).

Obtain C,; and U,; from A and U,_, by iterating following two steps until convergence (starting from t=1):

~ e
(i.c) Obtain Ci/ as dominant (normalized) eigenvector of : ( ;)

'mixed transfer matrix' W5, A [cf. Eq. (9)],
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T v

4
'mixed transfer matrix’°  W;_ A

[cf. Eq. (9)],

and extract a positive hermitian factor C ; from C;

~

using a polar decomposition: C.

= uici

(i.d) Obtain U through polar decomposition of C; A = U, C{ :

When \\C; - Cf (I is small enough, terminate loop,

and set C,:C‘" ul = ur..

Technical remark: a polar decomposition can be obtained via SVD:

+ f
A s usvt = (usu(uv?) = et us o)
—_— ——
hermitian, positive
10714 -=-. CTMRG
Results: S . . —-+ VUMPS
2D classical 10 — FPCM
Ising model: T 107°-
2 o7 .. PBBc-1=10"
Main message: £ s
fixed-point methods £ 1077 s
VUMPS and FPCM E o o
are faster than Tvan af
CTMRG! 107 sy
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4.TRG for 2D classical lattice models (optional) [Levin2007] Levin, Nave

TRG-1.4

Goal: compute partition function of 2D classical model.

Strategy: Express partition function as 2D tensor network, contract it by coarse-graining procedure.

Example 2D classical Ising model on honeycomb lattice [Zhao2010, Sec. I1.B]

N
Honeycomb lattice X S unit cell contains two sites, labeled 4, [
is bipartite: 2 >

three bond directions: X, jl 2

Hamiltonian: H = - Z 6 6,1 § = + Ising variable ()
! l
nearest neighbors, with (6 Q, Le A

Partition function: 2 = % ¢ ’F”I = 2 'ﬂ"{ 6156'36&' =2 T 9, @)
(& 153400y ————  {R<ee
= By
,(l "7_ ‘*

Factorize' the depend 6, and 4, by perf SVD 6@ W STV e
'Factorize' the dependence on an erforming an :

ctoriz p C 7 ! y performing = - Q_.

h, Jz ¢t _
% = 2 Mg, V() Veg  cmsalmere
2 5 lz \-_”q ~ h" upper/lower indices
(2¥2) (2x1) matrices

Advantage of this representation: spin dependence has been factorized.

Price to pay: additional 2-dimensional bond index, o/ e i ( 2.3 has been introduced.
/’

Group all Q's connected to site ,e on & -lattice, and sum over 62

T8 -3 6% 6f 9t ¢
U.lthz'” p &6£K 6}23 o2 f]>ZL G}

{
Ditto for site / on L -lattice, sum over 6;

b b 'S b X b j
T[Q‘Jwy} = ; &5-2,,( &56,3& 5,2 "( (s)

2

 forgiven x4 2 e 3128
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Tt = Z O, & O LS g

6t
2 eyt
Then partition function takes the form b

t

-

= Z: _ﬂ— 9 | =
{5 gy W

a z
T T T

-
(} Lea l'ch [21%4e2 I[E‘Ue.je.zc, 6)

sum over virtual indices onlall (suitably contracted) nearest-neighbor bonds

All statistical physics models with short-range interactions can be expressed as tensor network models, i.e.

2 =TT (for more examples, see [Zhao2010, section II]).

Contract out the tensor network by course-graining [Levin2007]

'rewire'; switch from T-vertices with external leg pairings (i,j), (I,k) to S-vertices with pairings (i,l), (j,k):

. . i I
i I v U A
— — n|A o g6 €]]
j k v
J k ; K

— ALY
X y
reshape SvD truncate coarse-grain:
tc_) bond_ trace out bonds on small triangle
dimension D to define updated T -tensor

Fig. 3 from [Zhao2010]
T T

) 2
3

T @)

trace out bonds

rewire on small triangles

 —

v

coarse-grained

lattice
dashed lines depict original bonds,

solid lines depict rewired bonds
Iterate this procedure, thereby coarse-graining lattice step by step, until T “, T!’ reach fixed point values,

T “*/ T b¥  Use these to compute partition function via z =

\
and from there the free energy per spin, F = -~ -U’/Z ,&\ P

and the magnetization, etc.
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5. TRG for quantum lattice models (optional) [Jiang2008] Jiang, Weng, Xiang TRG-1.5

Goal: compute ground state of 2D quantum lattice model

Ht

Strategy: iterative projectionvia e ~ , compress by 'simple update';

compute {% (% ) and 4yl O |4 using TRG of Levin & Nave.

Model: § =/  Heisenberg on honeycomb lattice. vertices: A or B tensors

bonds: diagonal ) -tensors (weights)

iPEPS-type tensor network Ansatz for ground state:

2\ [m]
weight factors associated with bc =
‘?7 T( ’“— Tr & Y 'XE (‘j [m] y
Leb flew X
_.B= z

black whtej ﬂx 32 ) x 3 %t'\j.’ 9,3

te%sors assoaaﬂed W|th vertices

Ground state projection via simple update

H = [Jy . UJ + H, (living on x, y, or z bonds) @)

»Ht —HY-C - ;]t /”}Z

Suzuki-Trotter: e ~ e e e ®)
— —_— —

Jx \F) A\

Sequentially update X, y, z bonds using these three gates.

b.& DA s lA,\ \/5

n

N d
truncate D A to D

s=ud vt A=

SVD, truncate

g W 87

'simple update': outer legs of )’Q contain —e— , which account for the 'environment' of )—Q

in mean-field fashion. Without including these ?\ factors in definition of S, procedure does not converge.
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- Similarly update y and z bonds. This concludes one iteration.
- Iterate simple update many times.

- -5
- Start with T ~ e * , gradually reduceitto T ~rv

. . . b
- Number of iterations needed until convergence: 0’ - /o

('L('\ /] is a double-layer tensor network.

Use TRG (4 la Levin & Nave) to contract bond indices of
double-layer network:

Start with a finite system, and iterate until only six sites are left; then trace out final bond indices.

Results [Jiang2008]
0.30
r S TABLE II. Comparison of our results with those obtained by
3= other approaches for the ground state energy per site £ and the
staggered magnetization M of the Heisenberg model with i = 0.
0.25 - E
—_ Method E M
£
s o Spin wave [12] —0.5489 0.24
0.20 - —=— D=5 . Series expansion [13] —0.5443 0.27
___: B g:? Monte Carlo [14] = 0.5450 0.22
—x— D=8 Ours D =8 —0.5506 0.21 = 0.01
%1% 02 04 06 0.8 10

h

FIG. 5 (color online). The staggered magnetization M (k) as a
function of the staggered magnetic field, at different D.
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6. Second renormalization (SRG) of tensor network [Xie2009], TRG-1.6
states (optional) more details: [Zhao2010]

Goal: include influence of environment when doing update 'global optimization', 'full update'.

Two applications: (i) partition function of classical 2D models
(ii) 2D quantum ground states

(TRG.1.6)
(i) Classical tensor network model t = Tf _”— a 5

T
Lea, l'ch (el ge?y l[e’\xe,ljc.zc,

. . i l
eci 1 | 1 M | U Sq
rewire: M k:\ - — njA o gt
j k i kK /V
J K s, (

reshape reshape truncate

)

SVD minimizes truncation error for rewiring M . However, we should minimize truncation error of Z.

Renormalize environment

Partition function:
Z = T« ME
Li ik
= %2 V\ JREJ I @)
\

Goal: minimize truncation error of Z. convention: counterclockwise : Z

assignment of indices —_5 [,! L

Strategy:
_~ (a) cheap mean-field approach ('single update')
() Compute £ (b) on finite lattices

N\ (c) more expensive forward/backward TRG (‘full update')

(i) Do SVD on ME , Let's discuss (ii) first.

Minimize truncation error of ME [Zhao2010, Sec. II1.B]

N M . SVD

truncate

2 - b e otk i
"R T ) \/+®M= s Vo
€ Ay

Sub f S SO S
wn B2 LAV ke S=OOFO==0= U (&)
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C
<
>\f
™y
>—
e
<

+

and M /\ \/ M A /\ ~ U A v = M

{ 'D-L D

x ! — ' D >0—@—0=— -
g , () D
)
"= +-+ trace in (3) connects these - * -
truncate from )~ backto D 3)
Since Z = (¢ /7 , this truncation directly controls error in partition function!
It knows not only about M, but also about its environment, via U, /\‘ V’*L
~ - /""
Now express ¢ in terms of truncated objects, (L ; A , v
. o . = o _
To this end, first invert relation between ¢ and ¢ , using W =yty = 1
(s) - 7~ Y
-l
Moo= VAR Y A L(L
. . a”. ~ A.II,L f-'/.L ~
then insert truncated version of M: UATATY
t_____.,' -\ —~— 3
and write as product of two vertices: = S x S"J
L ¢
Qe a, U b, A Sq
with indices: M - = S™ S
— . “
A\ (X

Now we return to (i): actually computing the environment
(a) Computing environment tensor = using simple update (mean-field approach) [Xie2009]

i I i | U
M
L
J k i A
J k j K

M= UA \/+ defines the

'singular bond vector' A , which measures
entanglement between two sites. It can be used directly
to obtain a cheap, mean-field approximation of
environment ('simple update'):

-Take = :/7.:/\6‘/},(/]1"

e

M ~ A S
- Compute M, then do SVD: =UA Y

r\/'

ond vector
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-Take [= :j/‘;/\\\'/}k/u'

a4

~Compute M ,thendosSvD: M = UA

f‘}

new bond vector

<

~

~Usenew \= /1 torecalculate E M A , etc.

- Iterate until convergence (typically 2 to 3 iterations suffice; near critical point, more are needed).

(b) Computing environment tensor E using_finite lattices

Se(Ty = 1 - FO

€¢1=od’ (g9)
. e ‘ .
10°F " S 4
/ \ ——— S
10k —_7-._7-— \,‘{YTW]‘"K:«J;-‘::L_‘E.
po-e e A ™~ !
" / 10 T ~ I
\ = p \
5 10" N 1
- TRG ™,
. . 5 ——4points
(a) 6 sites w0y s x:nl:r ]
; 14 points e
107 22 points T
10 . ; . . ‘ ,
32 34 36 38 40 42 44
{ T

- q*})_ FIG. 10. (Color online) Relative errors of the free energy for the

_\)_< Ising model on a triangular lattice obtained by considering the sec-

/ ond renormalization effect from four finite environment lattices

which contains 4, 8, 14, and 22 sites, respectively. The configura-

(b) 10 sites (d) 24 sites tions of these environments are shown in Fig. 9. The TRG result is
also shown for comparison.

Including even just a few environmental sites already leads to big improvements!

(c) Computing environment tensor £ using TRG [Zhao2010]

'Forward iteration':

(@) —» (b): Rewire environment Li
using data at iteration n:

T@q_t_[“) - M“A _ M(n\ /\[ul \]l(nl

(b) - (c): Trace out small triangles, T = S5
four S are left over

(c) - (d) + (e): Identify new environment

(e) looks same as (a), only rotated by 90
degrees, and rescaled.

Ttaratinn ralatinn avnraccinn
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degrees, and rescaled.

Iteration relation expressing
old through new environment:

fu~c (u] “ x b b
Esie = By e Seod Siip Sy St

—_—

- Start with a very large but finite number of sites.
- Iterate until only 4 environmental sites are left:
- Compute final environment, E () , by tracing out open indices:

Te ToToT¢ T

n

p (n)

'Backward iteration':

Q b
- Start from current values of tensors | T and bond vectors AN

(N -
- Use them to compute E ! , fim W etc., all the way back to & (o) = € = desired result.

4

~N

This completes step (i). Now go to step (ii), compute ) /1 . M , and iterate, until A have converged.

Results for SRG (2nd renormalization) for classical 2D system

Ising model on triangular lattice:

10° — — T T . - T T T -
" 'y = =—1rG ] mean field

W' —— TRG —— ] .
Mean Field F \ g - ) E SRG

——SRG ' ] 10k \

107k A —
e 107 par \\ - Q2
S . = 107k
107 E =
o / S ] 10 \
» \"'lh ——
32 34 36 38 4

10" ahE 3 .y
32 ' 042 44 " 8 16 24 2 30
T D
) FIG. 12. ‘(COIOF ﬂphne} Compan‘son of the l‘f?!fltl\'h) error of ‘Ihe FIG. 13. (Color online) The relative error of the free energy as a
free energy for the Ising model on triangular lattices obtained using function of the truncation dimension D for the Ising model on
TRG (red), the mean-field approximated SRG (blue), and the SRG . . . . cut ) i .
) . o triangular lattices obtained using the TRG (black) and SRG (blue),
(black) methods with D_,,=24, respectively. The critical tempera- respectively. T=3.2
ture is T.=4/In 3. P ey =2
critical state is hardest to simulate error drops with increasing D

much more quickly for SRG than TRG

Results for SRG (2nd renormalization) for quantum ground state search

Optimize by imaginary time evolution; contractions performed using SRG.

A
Compute expectation values such as é’l{ [ \)() (,w 0 \‘L\/) using SRG, too.
’

[Xie2009] : Heisenberg on honeycomb
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-0.535 T ™ T 0.24 T T T
—a—TRG —a—TRG
SRG yields more stable results than TRG! o540} SREY on RG]
w04y 15 om
-0.550 1
@ 021+ (b)
A p—
3 4 5 6 7 8 3 4 5 6 7 8
D D

FIG. 5 (color online). (a) The ground state energy per site Ey
and (b) the staggered magnetization My, as functions of the
bond degrees of freedom D on honeycomb lattices.

[Zhao2010]
-0.5438 T .
' ! -0.540 .x
. \
=1}
o, -0.5440 | '/-_"\"H.-r g -osuf
ol L 2 | m
2 SR S R, 2
g 05442 / g -osuf |
Ahh A @
'q":; ¢ A—AA A B osaf \ ]
& 0540 L P , g .\.
=] O o544 —o—o_ ]
S / —a—D=6 i T S ~o-0-g_ g o
0346 +—D=8 . . . . ‘ . .
G] —4—D=10 T T Y e e
-0.5448 - . . L Bond Dimension D
a0 60 0 100 120
D FIG. 20. The ground-state energy of the Heisenberg model on a

it
“ honeycomb lattice as a function of the bond dimension D) obtained

FIG. 19. (Color online) The SRG result of the ground-state en- by the SRG with D,;=130.

ergy as a function of the truncation dimension D_,, for the Heisen- B¢
berg model on a honeycomb lattice. D is the bond dimension of the f:_s(zj = —0.54440 E" = -05 4455(20)
wave function. PR

Energy does not decrease with D_cut, because
imaginary time-evolution / SRG is not variational!
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7. Core tensor renormalization group (optional)

Goal: reduce computational cost of TRG from (9( ’XG ) to

[Lan2019]

TRG-1.7

qr*)

Strategy: shrink lattice linearly rather than exponentially with each coarse-graining step.
(b) 1 23 4 5

FIG. 1. A depiction of the CTRG iteration, which maps an
L x L lattice of tensors to an (L — 1) x (L — 1) lattice. (a)
The initial network is everywhere composed of copies of the
bulk tensor Ag, except for a single ‘core’ row and column
containing tensors { Ae, An, Ay} as indicated. (b) An adjacent
row and column of the network has been contracted into the
core row/column, thus growing the index dimension of the
core tensors. (c¢) The indices of the core tensors are truncated
to dimension ¥y, as to obtain new core tensors { AL, A}, AL}

(a) (b)

M

P.M

MMt

71G. 3. (a) The projector P, = YhYJ should be chosen to
‘approximately) leave invariant the network F', which is the
1etwork formed from the central tensors of the initial lattice
n Fig. 2(a). The optimal isometry Y}, is formed by taking
:he eigenvalue decomposition (ED) of F'F' T when F is viewed
15 a matrix between its left two and remaining indices, and
runcating to retain only the x dominant eigenvectors. (b)
The optimal isometry Y, is obtained from the ED of FFT,
wvhen F'is viewed as a matrix between its bottom two and
‘emaining indices. (¢) The optimal isometry Y. is obtained
rom the ED of MM, when M is half of the F' network.
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(a)

U es
ety
::::..._
a0

Insertion

lContra.ction
N

FIG. 2. At iteration of the CTRG algorithm. (a) The ini-
tial square lattice network is homogeneous except for a core
row/column which contains core tensors { A,,, Ay, Cy, C,.} and
a diagonal line through the core along in which the bulk
tensors have been decomposed into products of 3-index ten-
sors. (b) Pairs of isometries {Y,,Ys,Y.} and their conju-
gates have been inserted into the core row/column of the
network. (c) Isometries are contracted with their neighboring
tensors, effectively absorbing a bulk row/column into the core
row /column, as to produce new core tensors {A,, A}, C}, C}}.
(d) Definitions of the new core tensors. +

M= USvF cusot = MU = UsTu
uutM = uut M5V+:usv"
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FIG. 5. (a) A comparison of the accuracy of the free energy

density produced by TRG and CTRG for the Ising model on
an infinite strip of width L = 128 sites at critical temper-
ature. Both methods produce comparable accuracy for the
same bond dimension v, with TRG giving only slightly more
accurate energies. (b) Comparison between TRG and CTRG
for accuracy of the free energy density as a function of tem-

perature with fixed bond dimension y = 30.



