
TCI.4

Maximum volume principle
To get best improvement, i.t. to maximize reduction in old error, add to       that new element
that maximizes error of 'old' CI prediction. By (2), that maximizes                    , i.e. volume spanned by
row or column vectors of pivot matrix. 

new element 'old' CI prediction for that element

Finding truly optimum new element requires 'full search' of all potential new ones,  with runtime
If        is a very large matrix, finding optimal new pivot can take very long time.

'Rook search' (among non-pivot rows and columns): 
search along randomly chosen initial column for the row yielding maximum old error,
then along that row for the column yielding maximal old error, etc. Stop when 
“rook condition is established”, i.e. when an element is found that maximizes 
old error along both its row and column; select that element as new pivot.

Faster alternative strategy, that is successful in practice and achieves               runtime:

move like chess rook

Let         denote pivot matrix after     steps of sequential rook search:  

Its elements satisfy 'rook conditions': each new pivot          maximizes old error along its row and column:

Given pivot matrix                        with           . To improve CI decomposition, add a new pivot:

Recall Schur determinant identity (TCI.3.29) [for proof: see (TCI.5.3-5)]:

How do we find the 'best' new element                   ?

error of 'old' CI prediction

first pivot second pivot third pivot

[Fernandez2025, Sec. 3.3.2]

Add new pivots until  |error of 'old' CI prediction| < specified tolerance        for all potential new pivots. 

The resulting decomposition is denoted                            (subscript       denotes 'specified tolerance')   

In practice, we don't insist on finding strictly optimal pivots. It suffices to obtain 'fairly good' pivots
in shorter runtime (with better scaling, e.g.               ), at the cost of somewhat (~10%) larger  
to reach specified tolerance.

4. Finding new pivots
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Compared to full pivoting, rook pivoting has 
(i) computational cost for finding one new pivot is reduced from                 to                          ; 
(ii) comparable robustness  [Poole2000]; 
(iii) almost as good convergence of CI in practice.

Rook search is 'greedy' algorithm: makes locally-optimal choice instead of seeking globally-optimal solution.

Issues:

2. avoid explicit computation of                   partial rank-revealing LU (prrLU) decomposition (see TCI.5). 

When inverting    , the relative error in        can be estimated as (original error in    ) * (condition number).

'condition number':          (singular values of     ) 

In practice,   original error in          floating point error; computation of      becomes unstable for

[Golub2013, Section 2.6 (pp. 87- 90)]

Strategies for ameliorating / avoiding problem of increasing linear dependence:

1. When adding new pivots, discard suboptimal earlier pivots           'block rook pivoting' (see below).

Block rook search

Goal: update list of pivots in a manner that can both add new ones and discards old ones if they are found
to be suboptimal; for efficiency, use old pivots as starting point for more/better pivots. 

(i) 'Ergodicity problem': Rook pivoting may miss relevant parts of matrix (miss some linearly independent 
     rows and columns), yielding suboptimal CI decomposition (better ones having same rank exisit).

Partial remedy: perform several rook pivot searches in parallel          'block rook pivoting'.

(ii) 'Increasing linear dependence' (problematic for any 'accumulative' CI scheme, which keeps adding pivots 
     but never discards pivots that turn out to be suboptimal): newly added rows and columns may increasingly   
     be almost linearly dependent (almost parallel) to old ones. Then computation of         becomes unstable: 

So, large                   instabilities for computing

Large condition numbers arise 
- if        has two almost parallel columns (so that their orthogonal 
  components are much smaller than their parallel ones), or 
- if             length of some columns is much larger than of others. 

This observation generalizes to sets of columns that are almost linearly dependent.

(iii) 'Update issue': in TCI applications (see TCI.7-10), one routinely encounters the following situation:
      having found a CI factorization of a                    with 'good' pivot matrix                  , 
      the matrix      itself is updated by adding some rows and columns: 
     Then, we seek a CI of the enlarged matrix           . We would like to initialize search for new/better
     pivots by starting from the old pivots             , but expect that some of them will not be optimal for      ,
     so we need a way to discard bad ones.
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Input: matrix                 and 'old' pivot matrix                  defined by old pivot lists            of length     .
Alternatingly search for better pivots along columns and rows in odd or even iterations, respectively.

Initialization: construct list of         candidate columns                          new random indices 

define updated candidate lists                      pivots of  

Even iterations: construct row matrix                           , do full-search CI    decomposition thereof,      

define updated candidate lists                      pivots of  

Stop when pivot lists            no longer change, then update 

old 

old initial
updated        
(= permuted version of initial     )

updated 

old 
pivots

optimal 
pivots of 

updated

optimal 
pivots of 

updated 

Odd iterations: construct column matrix                       , do full-search CI    decomposition thereof,      

Output: new pivot lists              of up to         elements each that define  

input: odd: even:

Remarks:

- It can be shown that block rook search always terminates, and when it does, rook conditions (4) are satisfied.     

- Block rook search not only adds new pivots, but also discards old pivots, if better ones become available. 

- Block rook search explores                      candidate pivots, compared to only                for rook search, 

  and thus takes longer by a factor          ; but in return it yields            new pivots, rather than just 1. 

[Fernandez2025, App. A.2]

Strategy: do parallel search of several rows or columns, starting from existing pivot rows and columns
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TCI.5

Consider block matrix: with      assumed square and invertible.

Definition: 'Schur complement of         in       :

Useful relations involving the Schur complement:

(i) Schur determinant identity: 

Determinant of (3):

(ii) Inverse of Schur complement:

Proof of (ii): Invert (3):

note index structure: 2's outside, 1's inside

block dimensions match:

The  22-component of (7) yields (6).

[Fernandez2025, Sec. 3.2]

Schur complement                has dimensions of        , but includes information from other three blocks.

            is result of 'eliminating' block       from     , or of 'projecting' or 'restricting'       to space of        .

(iii) Remark for physicists: (6) can be used to derive self-energy of matrix Green's function: 

Consider the 'Hamiltonian' matrix

Its 'Green's function' is the matrix 

(0) 'Factorization property':       can be factorized as follows: 

check this by multiplying out:

prime on 22' indicates that
         block can be rectangular
with dim(2)      dim(2')

(if       and         are square and        is invertible) 

5. Properties of Schur complement
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(iv) Schur quotient rule: When successively 'eliminating' more than one block, the order does not matter

It's 'projection' or 'restriction' to 22-space is:

with 'self-energy'
Proof of (10), (11): 

Consider A with subblock B:

Assume                 are square and invertible.

Schur quotient rule:

For a proof of (iv), see  [Fernandez2024, App. A.1]

Since order of block elimination does 
not matter, use a simpler notation: 

Here,  /1  or /2  denotes elimination of square 11- or 22-block (w.r.t. original 3x3 block matrix), 
and  /(1,2) the elimination of the square 2x2 block containing both.

For matrices involving larger number of blocks, 
iterative application of Schur quatient rule to
successively eliminate blocks      to       gives: 

Permutations of rows and columns in 11- and 22-blocks can be taken before or after taking
the Schur complement                    without affecting the result. 

reminiscent of 

red, blue, green: rows & columns labeled 1, 2, 3

thin lines: original matrix
thicker lines: Schur complement
even thicker lines: two-fold Schur complement
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(v) Restriction of Schur complement:

Restriction of Schur complement to limited numbers of rows and columns is equal to Schur complement 
of full matrix restricted to those rows and columns (plus the pivots):

Let            specify Schur complement; its restriction to its       -rows and       -columns is given by:

(v) follows directly from definition of Schur complement:

For restricted version: retain only                     rows (blue) and only                    columns (blue):

restricted restricted
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TCI.6

Decomposition                   is 'rank-revealing' if both    
    and    are well-conditioned and        is diagonal.

rank     = number of nonzero entries on diagonal of 

Standard LU decomposition: 
with     lower-triangular,       upper-triangular

Partial rank-revealing LU (prrLU) algorithm computes LU decomposition in manner that is  
(i) rank-revealing: largest remaining element is used for next pivot;
(ii) partial: process is stopped after constructing first       columns of      and rows of        . 

Remark: LU decomposition implements Gaussian elimination for solving linear system of equations:

using backward 
substitution 

To solve                for     , using                 , first solve                  for      , then                for    . 

using forward
substitution 

Recall general factorization of block matrix: 

(TCI.4.3)
prrLU algorithm:

Permute rows and columns of         to move largest element (in modulus) = first pivot 
to top-left 11 position then apply (5) with 11-block of size 1x1, containing first pivot:

Permute rows and columns of             to move largest element (in modulus) = second pivot
to top-left 11 position then apply (5) with 11-block of size 1x1, containing second pivot:

twice permuted

permuted

[here, prime on second 2' indicates that dim(2')  may differ from dim(2) ]

permuted

twice permuted

rectangular rectangularsquare square

rectangular rectangularsquare square

rectangular rectangularsquare square

6. Partial rank-revealing LU decomposition (prrLU)
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After       steps, we obtain prrLU decomposition of the form 
   times permuted

        and         are lower- and upper-triangular, with diagonal entries = 1.
       (shorthand for        ) is diagonal, containing the maximal (in modulus) elements from each step.
Block subscripts  label rows, columns with indices given by   1:

2:
2':

When Schur complement becomes zero, after      steps, scheme terminates, identifying rank(    ) = 

rectangular rectangularsquare square

For any                (9) can be recast as: 

CI structure CI error

Identify the CI ingredients:

pivot matrix
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Maximal pivot strategy of prrLU eliminates largest contribution to next Schur complement, hence 
reducing CI error. Hence, it is a simple, greedy algorithm for building near-maximum volume submatrix.

prrLU is updatable: new rows and columns can be added easily.

Advantages of prrLU over direct CI:
- numerical stability - since construction and inversion of ill-conditioned pivot matrices is avoided.
- prrLU is more stable than QR-stabilization approach to CI. 
- combination prrLU + block rook search allows efficient updates and has been found to work very reliably.

Search for maximal pivot in current Schur complement can be performed as full search, rook search or 
block rook search (see TCI.4).   
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