
TCI.4

Maximum volume principle
To get best improvement, i.t. to maximize reduction in old error, add to that new element
that maximizes error of 'old' CI prediction. By (2), that maximizes , i.e. volume spanned by
row or column vectors of pivot matrix.

new element 'old' CI prediction for that element

Finding truly optimum new element requires 'full search' of all potential new ones, with runtime
If is a very large matrix, finding optimal new pivot can take very long time.

'Rook search' (among non-pivot rows and columns):
search along randomly chosen initial column for the row yielding maximum old error,
then along that row for the column yielding maximal old error, etc. Stop when
“rook condition is established”, i.e. when an element is found that maximizes
old error along both its row and column; select that element as new pivot.

Faster alternative strategy, that is successful in practice and achieves runtime:

move like chess rook

Let denote pivot matrix after steps of sequential rook search:

Its elements satisfy 'rook conditions': each new pivot maximizes old error along its row and column:

Given pivot matrix with . To improve CI decomposition, add a new pivot:

Recall Schur determinant identity (TCI.3.29) [for proof: see (TCI.5.3-5)]:

How do we find the 'best' new element ?

error of 'old' CI prediction

first pivot second pivot third pivot

[Fernandez2025, Sec. 3.3.2]

Add new pivots until |error of 'old' CI prediction| < specified tolerance for all potential new pivots.

The resulting decomposition is denoted (subscript denotes 'specified tolerance')

In practice, we don't insist on finding strictly optimal pivots. It suffices to obtain 'fairly good' pivots
in shorter runtime (with better scaling, e.g.), at the cost of somewhat (~10%) larger
to reach specified tolerance.

4. Finding new pivots

 15-TCI-pivoting-Schur-pprLU Page 1

Compared to full pivoting, rook pivoting has
(i) computational cost for finding one new pivot is reduced from to ;
(ii) comparable robustness [Poole2000];
(iii) almost as good convergence of CI in practice.

Rook search is 'greedy' algorithm: makes locally-optimal choice instead of seeking globally-optimal solution.

Issues:

2. avoid explicit computation of partial rank-revealing LU (prrLU) decomposition (see TCI.5).

When inverting , the relative error in can be estimated as (original error in) * (condition number).

'condition number': (singular values of)

In practice, original error in floating point error; computation of becomes unstable for

[Golub2013, Section 2.6 (pp. 87- 90)]

Strategies for ameliorating / avoiding problem of increasing linear dependence:

1. When adding new pivots, discard suboptimal earlier pivots 'block rook pivoting' (see below).

Block rook search

Goal: update list of pivots in a manner that can both add new ones and discards old ones if they are found
to be suboptimal; for efficiency, use old pivots as starting point for more/better pivots.

(i) 'Ergodicity problem': Rook pivoting may miss relevant parts of matrix (miss some linearly independent
 rows and columns), yielding suboptimal CI decomposition (better ones having same rank exisit).

Partial remedy: perform several rook pivot searches in parallel 'block rook pivoting'.

(ii) 'Increasing linear dependence' (problematic for any 'accumulative' CI scheme, which keeps adding pivots
 but never discards pivots that turn out to be suboptimal): newly added rows and columns may increasingly
 be almost linearly dependent (almost parallel) to old ones. Then computation of becomes unstable:

So, large instabilities for computing

Large condition numbers arise
- if has two almost parallel columns (so that their orthogonal
 components are much smaller than their parallel ones), or
- if length of some columns is much larger than of others.

This observation generalizes to sets of columns that are almost linearly dependent.

(iii) 'Update issue': in TCI applications (see TCI.7-10), one routinely encounters the following situation:
 having found a CI factorization of a with 'good' pivot matrix ,
 the matrix itself is updated by adding some rows and columns:
 Then, we seek a CI of the enlarged matrix . We would like to initialize search for new/better
 pivots by starting from the old pivots , but expect that some of them will not be optimal for ,
 so we need a way to discard bad ones.

 15-TCI-pivoting-Schur-pprLU Page 2

Input: matrix and 'old' pivot matrix defined by old pivot lists of length .
Alternatingly search for better pivots along columns and rows in odd or even iterations, respectively.

Initialization: construct list of candidate columns new random indices

define updated candidate lists pivots of

Even iterations: construct row matrix , do full-search CI decomposition thereof,

define updated candidate lists pivots of

Stop when pivot lists no longer change, then update

old

old initial
updated
(= permuted version of initial)

updated

old
pivots

optimal
pivots of

updated

optimal
pivots of

updated

Odd iterations: construct column matrix , do full-search CI decomposition thereof,

Output: new pivot lists of up to elements each that define

input: odd: even:

Remarks:

- It can be shown that block rook search always terminates, and when it does, rook conditions (4) are satisfied.

- Block rook search not only adds new pivots, but also discards old pivots, if better ones become available.

- Block rook search explores candidate pivots, compared to only for rook search,

 and thus takes longer by a factor ; but in return it yields new pivots, rather than just 1.

[Fernandez2025, App. A.2]

Strategy: do parallel search of several rows or columns, starting from existing pivot rows and columns

 15-TCI-pivoting-Schur-pprLU Page 3

TCI.5

Consider block matrix: with assumed square and invertible.

Definition: 'Schur complement of in :

Useful relations involving the Schur complement:

(i) Schur determinant identity:

Determinant of (3):

(ii) Inverse of Schur complement:

Proof of (ii): Invert (3):

note index structure: 2's outside, 1's inside

block dimensions match:

The 22-component of (7) yields (6).

[Fernandez2025, Sec. 3.2]

Schur complement has dimensions of , but includes information from other three blocks.

 is result of 'eliminating' block from , or of 'projecting' or 'restricting' to space of .

(iii) Remark for physicists: (6) can be used to derive self-energy of matrix Green's function:

Consider the 'Hamiltonian' matrix

Its 'Green's function' is the matrix

(0) 'Factorization property': can be factorized as follows:

check this by multiplying out:

prime on 22' indicates that
 block can be rectangular
with dim(2) dim(2')

(if and are square and is invertible)

5. Properties of Schur complement

 15-TCI-pivoting-Schur-pprLU Page 4

(iv) Schur quotient rule: When successively 'eliminating' more than one block, the order does not matter

It's 'projection' or 'restriction' to 22-space is:

with 'self-energy'
Proof of (10), (11):

Consider A with subblock B:

Assume are square and invertible.

Schur quotient rule:

For a proof of (iv), see [Fernandez2024, App. A.1]

Since order of block elimination does
not matter, use a simpler notation:

Here, /1 or /2 denotes elimination of square 11- or 22-block (w.r.t. original 3x3 block matrix),
and /(1,2) the elimination of the square 2x2 block containing both.

For matrices involving larger number of blocks,
iterative application of Schur quatient rule to
successively eliminate blocks to gives:

Permutations of rows and columns in 11- and 22-blocks can be taken before or after taking
the Schur complement without affecting the result.

reminiscent of

red, blue, green: rows & columns labeled 1, 2, 3

thin lines: original matrix
thicker lines: Schur complement
even thicker lines: two-fold Schur complement

 15-TCI-pivoting-Schur-pprLU Page 5

(v) Restriction of Schur complement:

Restriction of Schur complement to limited numbers of rows and columns is equal to Schur complement
of full matrix restricted to those rows and columns (plus the pivots):

Let specify Schur complement; its restriction to its -rows and -columns is given by:

(v) follows directly from definition of Schur complement:

For restricted version: retain only rows (blue) and only columns (blue):

restricted restricted

 15-TCI-pivoting-Schur-pprLU Page 6

TCI.6

Decomposition is 'rank-revealing' if both
 and are well-conditioned and is diagonal.

rank = number of nonzero entries on diagonal of

Standard LU decomposition:
with lower-triangular, upper-triangular

Partial rank-revealing LU (prrLU) algorithm computes LU decomposition in manner that is
(i) rank-revealing: largest remaining element is used for next pivot;
(ii) partial: process is stopped after constructing first columns of and rows of .

Remark: LU decomposition implements Gaussian elimination for solving linear system of equations:

using backward
substitution

To solve for , using , first solve for , then for .

using forward
substitution

Recall general factorization of block matrix:

(TCI.4.3)
prrLU algorithm:

Permute rows and columns of to move largest element (in modulus) = first pivot
to top-left 11 position then apply (5) with 11-block of size 1x1, containing first pivot:

Permute rows and columns of to move largest element (in modulus) = second pivot
to top-left 11 position then apply (5) with 11-block of size 1x1, containing second pivot:

twice permuted

permuted

[here, prime on second 2' indicates that dim(2') may differ from dim(2)]

permuted

twice permuted

rectangular rectangularsquare square

rectangular rectangularsquare square

rectangular rectangularsquare square

6. Partial rank-revealing LU decomposition (prrLU)

 15-TCI-pivoting-Schur-pprLU Page 7

After steps, we obtain prrLU decomposition of the form
 times permuted

 and are lower- and upper-triangular, with diagonal entries = 1.
 (shorthand for) is diagonal, containing the maximal (in modulus) elements from each step.
Block subscripts label rows, columns with indices given by 1:

2:
2':

When Schur complement becomes zero, after steps, scheme terminates, identifying rank() =

rectangular rectangularsquare square

For any (9) can be recast as:

CI structure CI error

Identify the CI ingredients:

pivot matrix

 15-TCI-pivoting-Schur-pprLU Page 8

Maximal pivot strategy of prrLU eliminates largest contribution to next Schur complement, hence
reducing CI error. Hence, it is a simple, greedy algorithm for building near-maximum volume submatrix.

prrLU is updatable: new rows and columns can be added easily.

Advantages of prrLU over direct CI:
- numerical stability - since construction and inversion of ill-conditioned pivot matrices is avoided.
- prrLU is more stable than QR-stabilization approach to CI.
- combination prrLU + block rook search allows efficient updates and has been found to work very reliably.

Search for maximal pivot in current Schur complement can be performed as full search, rook search or
block rook search (see TCI.4).

 15-TCI-pivoting-Schur-pprLU Page 9

