
TCI.14

Quadratures for multivariate integrals

Consider 

1D integrals can be computed using discrete grid of points                and quadrature weights, 

(e.g. Gauss-Kronrod or Gauss-Legendre weights)

TCI unfolding of     yields factorized representation: 

(revisiting TCI.2)

[Fernandez2025, Sec. 5]

TCI

Integral factorizes too:

represents       1d integrals, viewing        as          matrix

Alternative: use 'weighted unfolding': 
TCI

Then:

Weighted unfolding may achieving higher accuracy for given    , since error estimation during TCI
construction includes information about weights. Weighted unfolding is typically combined with 'environment 
error' unfolding scheme (see TCI.9.10) designed for computing integrals. 

First example of efficiency of integration via TCI unfolding, see TCI.2.

Second example:

[Fernandez2025, Sec. 5.2]

Integral is known exactly, e.g. 

TCI computation of integral using 15 Gauss-Kronrod grid (i.e.            ), i.e. # of grid points = 

14. Computing integrals and sums
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relative 'error in integral' (circles): 

relative 'in sample error' (crosses) : 
over all sampled pivots

# function calls remains modest ,            , even for             .             

Error decreases rapidly with # of half-sweeps!

blue:     no environment mode  
orange: environment mode 
                 [cf. (TCI.9.10)]

Computation of sums: partition function of 1D Ising chain

Partition function: , Boltzmann weight: 

1D Ising model: energy of configuration     : long-ranged coupling: 

Free energy: 

TCI-factorize Boltzmann weight: 
TCI

, specific heat: 

Magnetization:

Number of function calls (a) grows exponentially with # sweeps until pivot error (b) approaches convergence. 

configurations
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TCI.15[Fernandez2025, Sec. 6]

Many functions have very sharp structures, or large domains of definition, or both.
Corresponding discretization grids must have high density of points, or a large domain, or both. 
In short: we need grids with exponentially many grid points. 

Solution:     'quantics' representation: use binary representation of each variable!

Function of 1 variable

Define uniform grid: with 

Binary form of grid index
using        bits:

describes structures at scale 

Discretized variable: 

Discretized function:              indices, 
each of dimension 'quantics representation' of     

Function of       variables

Define uniform grid: with 

Binary form of grid index
using      bits per variable:

describes structures of         

         at scale 

1. 'Interleaved quantics representation': group all bits describing the scale together: 

largest scale:

with 

relabel indices: 

If variables at same scale are strongly 'entangled', but less so for variables at different scales,        will have fairly low 
bond dimension, i.e.       is strongly compressible. This turns out to be the case for many physical applications.

next-largest scale: smallest scale:

indices are ordered by scale!

e.g.

There are different possibilities for ordering the indices:

this is called 'scale separation'

largest scale smallest scalenext-largest scale

Once        has been defined, it can be unfolded. The resulting         is called a 'quantics tensor train'  (QTT).

unfold

15. Quantics representations of functions
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2. 'Fused quantics representation':   'fuse'  all bits for scale         into a single variable:

3. Group together all bits addressing a given variable       , as done in the 'natural tensor representation. 

relabel

largest scale: smallest scale:

Again: if variables at different scales are not strongly entangled,          will be strongly compressible. 

This is suitable if different variables are not strongly entangled,  e.g. if function factorizes:

unfold

Some simple analytic functions are approximated well as QTT with                .

- Pure exponential factorizes completely, yielding          with              :

- Sine and cosine yield          with           , since they can be expressed as sums of two exponentials:   

- Dirac delta function has          :       

By contrast, random noise is incompressible.

Generally, if function has low quantics rank, sites representing different scales are not strongly 'entangled'.

The quantics representation makes this notion precise: cut bond, compute entanglement entropy between left and 
right parts of chain (as though it represented a quantum state) .

1D examples:

2D example: Kronecker symbol

Its matrix representation, a                     unit matrix, is incompressible by SVD  (all singular values are        ).

with binary representation (8) for  

- Heavy-side step function              has              .   (Show it!)     

(all bits of      must equal all bits of      )

   18-QuanticsTCI Page 4    



Quantics representation: = rank-1 MPS by fusing               and  

Multi-dimensional functions:

Pure exponential has                 : 

Dirac delta has   (all bits of      must equal all bits of      )

Step function with argument linear in       ,                              has               . 

In all these examples, bond dimension is small due to 'separability of length scales'. 

Example where bond dimension is not small: 
inside unit sphere
outside unit sphere

Because surface of sphere is curve,             depends on resolution with which curvature is resolved, i.e. on  

(b)   increases exponentially, because it additional pair of bits         
doubles # of points close to circle, which are those containing new information 

(c) depends on       , independent of specified tolerance, because step is abrupt. 
For broadened step,            decreases significantly (not shown). 

Integrals: are approximated as Riemann sums, then factorized over quantics bits: 

# of discretization points                     discretization error of integral                          exponential in      !! 

cost of TCI factorization                                linear in      !!

integration volume element, with 

'Matrix products':

Use quantics for each variable: 
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TCI.16

1D oscillating function: 

(e) Relative error                          of the integral                               converges rapidly with increasing      .  

2D oscillating function (interleaved representation)

This function has structure (oscillations) on different scales. A QTT with                             resolves them all!
At         , the QTT becomes numerically exact (within machine precision).

QTCI representation
reaches machine precision
at 

requires only       numbers
       MB of RAM

naïve regular grid would require
~         TB of RAM

orders difference!

16. Numerical examples of QTCI
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3D integral:

accumulative mode

reset mode
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TCI.17

Remarkable fact: when using quantics representations of functions, the Fourier transform (FT) operator, represented 

as an MPO, has remarkably low rank (          for machine precision in 1D). Thus, Therefore, taking FT of 

functions having low-rank quantics TTs can be done exponentially faster(!) than with fast Fourier transform (FFT).

Goal: compute 1D FT:

Discretize:   on uniform 1D grid, 

with quantics grid:
[see (TCI.15.1-5)]  

Discrete FT (DFT):
(or 'quantum FT') 

Quantics grid has exponentially many grid points, so naïve computation of DFT sum in (3) is exponentially expensive. 

QTCI strategy: find QTT representing         , then compute                  by contracting TTs for       and       .

quantics 
representations: 

FT operator: 

fused index:

describes scale

important: bits for             and       
are arranged in 'scale-reversed' order, 
to respect Fourier repricocity

Scale-reversed ordering (8) ensures that          has low rank:              

Unfolded: 

irrespective of      !

[Shinaoka2023, Chen2023]

Conclusion: for 1D function with rank      , the DFT can be obtained in                             

operations, exponentially faster than FFT, which needs                      operations.

          suffices for 
machine precision! 

17. Quantics Fourier transform (QFT)
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Intuitive reason for low rank: for scale-reversed index order, 
phase factor in DFT has simple structure.
Thus, it involves only 'short-range entanglement'.

Example: Quantics FT can be used to solve partial differential equation [Fernandez2025, Sec. 6.4]

1D heat equation: 

Discretize position variable: 

In momentum space, solution is known analytically: 

Strategy:

Nasty initial condition: 
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