DMRG.1-4: Ground State Search [Schollwock2011, Sec. 6.3] DMRG.1

» The Density Matrix Renormalization Group (DMRG) was invented by Steve White
(student of Ken Wilson) to solve general quantum chain models. [White1992], [White1993]

« First realization of connection between MPS and DMRG in limit L - : Ostlund & Rommer
[Ostlund1995]

« Realization that finite-size DMRG leads to MPS: Dukelsky, Martin-Delgado, Nishino, Sierra
[Dukelski1998]

* Modern formulation: Vidal [Vidal2003], [Vidal2004], Cirac & Verstraete [Verstraete2004]

» Time evolution: Daley, Kollath, Schollwdck, Vidal [Daley2004], White, Feiguin [White2004]

» Connection to NRG: Weichselbaum, Verstraete, Schollwock, Cirac, von Delft [arXiv:0504305],
[Weichselbaum2009]

« Survey of software libraries that implement DMRG-related algorithms: [Sehlstedt2025]

DMRG.1 Iterative ground state search

View space of all MPS of given bond dimension, D , as variational space.

Graphical representation, assuming site-canonical form with orthogonality center at site { :
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Arrow convention: use same arrow directions on virtual bonds for MPO as in MPS. Then, orientation of

MPS triangles, Y , T, A , A , hence we henceforth drop most (soften all) arrows.

Minimize <[ H [ in this space, subject to constraint of unit normalization, QU'f) =1,
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Ce
with normalization 'q,(') 1(/(" = | @ =
c+
L

)

(®

< ui . I_ bt ol HW _
Here, (, is viewed as vector, labeled by composite index @ = (" € ), and Ty as amatrix:

il—,}.ﬂ\& A {CL\Q = )(C l\a’ with normalization [CH . (Ce ]q -

compare (MPS.15.11)
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(7) is an eigenvalue equation for C . The lowest eigenvalue and eigenvector can be found W|th standard
linear algebra tools (e.g. Lanczos algorlthm next section), without having to construct H 1

It suffices to know how to compute H C,

More generally: if %) is not represented in S|te canonical form, one obtains a generalized

eigenvalue equation of the form HUC 0= Nl C I with N( defined by r.h.s. of (6) .

()

)

fully.

Use the 'eigenvector' with the lowest eigenvalue (= current estimate of ground state energy), say C%

to 'update' MPS, then move to next site, use SVD on C fe1 to shift orthogonality center to site Ll

Lo %4

Af-'.\\ 1‘ = ﬁﬂ-ﬂ ~
CSI EIH (u.) (5 V Bfﬂ ) gl C.{,n
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Compute new environments Lx and R;zn_ for site { , then optimize C”‘ , etc..

;};f-l Cﬂa-l

N“Y Y Y v 1 Y v 17
T~

< > —

'Sweep' back and forth until convergence of ground state energy has been achieved.
This works remarkably well for 1D chains with short-ranged interactions.

3 L
Cost of 1-site DMRG = cost of computing Hl ‘(_{,Q : U(D o‘ W+ ] o(luz)

Note: the full Ha of dimension D°d « D' d (expensive!) need not be constructed explicitly!
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DMRG.2 Lanczos method [Lanczos1950], [Ojalvo1970], [Paige1972], [Koch2011] DMRG.2
original idea stable version nice discussion

 Fast way of finding extremal eigenvalues of an Hermitian NxN matrix, H

« Prerequiste: an algorithm for computing || [q;) , for any vector l'\.ﬂ

We seek the extremal value of E [\qﬁ)& = ([ H (%) (W)

L [w)
Denote extremal value by E,3 = wmin E[hﬁ\ =:-F I\I{'Ql @)
The direction of steepest ascent of the functional & [lﬂ.ﬂ] , evaluated at  |."), is given by
= {
'functional gradient': SC—{\'UOX = My ol \p) @
S <yl {Y\Y D) QVARD LS
— H — E[(Wﬂ \47 =: |
= ()
AR a7

Moving in opposite direction will thus lower the energy:

E Uy - « \U(Q 1 < E HL(')K for small, positive ()

To find optimal value for &, minimize E {\’Uﬂ - o \’U((D& w.r.t. the 'variational parameter' o/ ,

in the 'Krylov space' Kl = s(mwz\’lﬂ , ('l-bhs = Sf‘v—\ %“(’7, H("”% . ©

Starting from the random initial state |77 , construct a normalized basis {IUD, Iv.)k for this space:

. . )
First basis vector: v,y = ——= @
2 RZOES

First Krylov step: explore the second direction in Krylov space by applying H to | v, )

Define lo; ) += Hlw) (®)

Orthogonalize w.r.t. [y,) : sty : = 18) -~ 1w)v, 18 @)

ensuring (U,,lu.]‘) = D (to)

Compute norm and normalize: L, := , CElGY R ()

2nd basis vector: ls): = (UTL>/L, Uz)
_ m , s

Rewrite (9): (B, = (v7) = Hlu) = 1)l H v ) (13)

—————— S
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Rewrite (9): {uy b, ('-—I) (o) = Hlvo) = 100l Bl ) (13)

—_— —~
define := ., = Lvalv,)

(13
Rearrange (13): Hlvo) = 1Y a0 + 1udb, ()
(Io)
¢ui| (14) and (10) yield: < lHlv,) = o & b = zn)dio) (i5)
since b is real, (11)

Finally, define a: = {(ulHv) @ v, | @7 (te)
Now we have orthonormal basis for %

2-dimensional Krylov space: K. : = Apn ¢ (V) vy % = Spe- IU"), "“"’"51 03

Inthe space K, , the Hamiltonian has the matrix representation

7 sl H [ LUl HIUl) G, b, (s
K' i (U,‘H(Uo> ('LS([H ‘U() B (b\ al

The ground state of Hkl , say lS >K with energy Ei , yields the optimal choice for ¢
| \

Now we could iterate: use ‘ S >K| as starting point for another optimization step. Convergence is

rapid. Monitor quality of result by computing the residual energy variance,
hR (3 I3
i) = (M-l = ldie) - Zelniw (19)
for |v9 = \ﬁ)x, , &= Eé‘ and stop when it drops below some threshold.

After N steps, starting from (U‘o7 , the resulting vector will live in

K (1))

]

SPG«A{ ‘U°>/ # “Uo?) H7— (\J.°> o HlJ ‘UQ} (0

i

'Krylov space of H over |U.H" (dimension A+ ).

Instead of repeatedly minimizing in 2x2 subspaces, we could first construct K NI then compute its
ground state. (This is faster, since it amounts to using N simultaneous variational parameters

instead of /\V separate ones.) To do this, iteratively construct a 'Krylov basis' for K N, such that

Kllwd) = spaw flod, (0, IgdY | with  <Wulvg) = §uw @

We now elaborate this iteration strategy, first for the 2nd Krylov step, then for the (n+1)-th step.

Second Krylov step: explore a new direction in Krylov space by applying Hto |t ):

Define \(:V-,_) o= Hlud) (22)
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I
Orthogonalize: \Uz'L7 = “3':7 - Z \UJV<U'\’3:1.7 (v

I Coi oy
ensuring (UJ-\U,"? =0 (= ol (z4)
Normalize: Q)Z LT m—; e R (x5)
3rd basis vector: ) = ‘U{L ? /kz 6l
,2%)
Rewrite (23): "\57-7Lz(z=‘) (u}) (!::z1 K> = [ Yo lH|u)) = (65 0IH|V)  (23)
————— .
define =G = (U\\(?;_7 0s) = b
(z9
Rearrange (27): Hlv) = Tvdb, + [o)a  + \UZ)LZ (23)
92
@, (28)and 24y yield:  Lup 1 Wl ) = 0 rosb, = Lo)H[u) next to-diagonal (2
since b is real, (25)
(13)
Note: <{wzff(vo) = o ,since  Hlwv,) & 5("‘“3. ‘Ub>/ ‘U(ﬂ (o)

and we orthogonalized 1U;5 w.rt. 1o, [U,) [see (23,24)]

(n+1)-th Krylov step: explore a new direction in Krylov space by applying H to | v, %,

Define [1'3'““) = Hlvy) (31
Define: &, = < \1}’(‘“) = (v, |H IU-“> diagonal elements (32)
w
A a~
Orthogonalize: IU;":I = Uuy) — Z \"jx\fﬂ Unir ) (35)
J=°
- -L :
ensuring <U'j|U‘.1,,,) = o for os)£n (3%
Normalize: (0.4.” = [(v,j;‘lvj;,) (3s)
(n+1)-th basis vector: "U.M_,) 1= "U:;.&/la Wt (3¢)

[If it happens that k;,,“ = o , pick an arbitrary \U}”h orthonormal to all |UP' J =0, .

Rewrite (33):

(3% (31,30)
lUM)»AW,, = l‘U:;\? = \‘HUVl> - \Uv\ )<0“||—|\qu ~ |- 1) <vua “‘“Uu> o (3
—" — =
(2) = liw Bo)=b,., 2
(& u-] (3w

fa rl-hnr-fhnn_nnvf-fn_{'linnnnnl

All other terms vanish: (U', \Hiu,) = ¢y, IH |1>:i7 =0 for |
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All other terms vanish: (U \H\O'V\) = {u lHIlw) = 0 for (¢ u-] ) (39
J J farther-than-next-to-diagonal

since by construction, H |'UJ'7 € Spe— {l %Y, 0ei ¢ ]H 1 and for l <u-1I,
(30)

ie. iS:(H 4w, lvy) isorthogonal tothemall: (v, |v. ) o for iz n (39)
orthonormal Krylov basis: '&D sy I'-" 7 J“ cee ’U'“_L)‘ ; Ww-.'?, lv,
‘L,

v, - i

‘Li‘" 1 7 is one of these states o,

Hlv fens Y lies in span of these states, hence has no overlap with
Rearrange (37): H(’U..\\ = \v’,‘,‘) (0.. + (U“) Qa, + ('U'nn7 gwﬂ (to)
{15, 1(40) and (34) yield buy, = o Hlvy = ldle,,y next-to-diagonal ;.

(38) holds if computations are done using exact arithmetic. In numerical practice, it does not hold
strictly (typical violations are O(w B 'z) ), and errors accumulate. Hence it is advisable to orthogonalize
a second time, directly after (32), before proceeding. This will be made explicit see below.

V) s I5y) |
H K = ‘ol [, X (Q.L
H has tridiagonal form: N A be 2. b
T 3
(k2)
by «
au"‘ G’N
<uy by O |

Ground state of L\K satisfies the eigenvalue equation ( H KN)‘ ‘ (Lf'g)J = E’Su (L[rg )n. o
J

Thus EN and “Qg? 2 \U' ? (71’ (we
) o S
J=°
are the best approximations, within the Krylov space K.J , of true ground state energy and ground state.

|
The Lanczos scheme converges exponentially fast, with a rate  ~ [gap to first excited state] / t

Summary Construct Krylov space of dimension N+ as follows:

1. Initialization: start with arbitrary (normalized) state [Uo?

Then repeat steps 2to 4 for . = o, ... N-1 e

7

2. Explore new direction in Krylov space by applying H:
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Then repeat steps 2to4for W =o0,... N-| :

7

2. Explore new direction in Krylov space by applying H:

la;q-l) F= H lUv\? , by = <6:'..‘+|l1.fu) (l‘f)

3. Orthogonalize w.r.t. the two previous Krylov vectors:

vy 1T - 2 10 L5180 )

e

Orthogonalize again, now w.r.t. all previous Krylov vectors (to minimize accumulation of errors, "ghosts"):

L 2 L
Ju, sty = o) - J,Z=o o) Loyl oy D
_ = feu Bty
4. Compute norm and normalize: J.D.,\,,l = A Uy, | .., (9
_ 1L
If L"\‘H *o0 , then ‘U—"ﬂ"? = \ Uv\-l-l )/b “s) (liﬂ

else, pick 1,4, as arbitrary normalized vector orthogonal to all \Ub>/ . vy

There are other ways of organizing this iteration loop, but the one shown here is numerically
the most stable. [Paige1972]

In the resulting Krylov space  [<; = Span § (Vo) 142, ... , o) ¢ (s6)
the Hamiltonian has the representation
T (a, b,
N B Ib) & L‘l— (s,ll
b. (1.3

.
N.

O‘H-\ ‘a,;
\ by Ay
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DMRG.3 Excited states - block Lanczos DMRG.3

AT Al (& B g4
Suppose we have an MPS representation for ground state, | 3) S D T G AR Gl )

found by DMRG. Excited states can be constructed repeating a DMRG sweep in space orthogonal to lf)),

Extremize: el 1) - A &alg) - 7, éz}\%'7 ()
Lagrange multipliers enforce  <%[¢) = |  and <Q|37 = o ®)
Extremization w.r.t. C,z yields
« Co b G
x Co P ) « Cg P

*

V ‘ /\/\‘// ‘ L“;

-tensors of \\I) built from AS (3 C -tensors of l%)

it fromy Ao

Generic structure of this equation, in mixed-canonical representation of site 4 [compare (DMRG-1.1.7)]:

) 'l’ (3) $ (3)
P‘)CL =\ C, + A, C? (5) with  Cglp =0 Cgcﬁe= o [¢)
cf. (DMRG-1.1.7) A
Displaying indices: 0‘ (Ot 6\ P) =. S°‘=ground state wave-function in local basis
(96! " a' . a' t a Y 910
MRS R P [ W W (47 lcelfcdd =1, (@) =@
1 SW'”
“ CAp

,

E RN P CH g AN LaE i]« T

with [ and R computed iteratively, y ﬁ-
Vs l¢ .

¢ fy ot e _ E I) |

N {LS!\K x Me\x e;z'{/*g,:\ ” ;{AS “ +x

J l

Index-free notation for (5): HICY = 2, 1¢Y ¢+ b \37 / (Clﬁ) =0 (

Projector onto subspace orthogonal to IS) 'Pfl = |s)( 5\ ) 'PS =1 - PS , 13EI lg) =0

e rey &' _ L 34 @
[Wlth indices: ?Q i = N 3 Sa ,  sothat Pﬁ a(}‘ =
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lwith indices: ?i”"a = 1 - 4 4. ,  sothat ?ﬁ"'a %“ = 0 j (12}

B my 1

Project (10) onto this subsg:ce: ?S 4 (ﬁ‘) - Pf )[C S = /,\153 1y + 0T IS\) (13)

Fgled =19¢gl = o “ e
=0 ?S d %\CB = L P& QY (1)

This is simply an eigenvalue problem, for ?a H , in subspace orthogonal to [37 . It can be solved
using straightforward generalization of Lanczos scheme, using Krylov subspace orthogonal to | 37
Given an arbitrary initial state \Us) , project it onto orthogonal subspace, \u’o‘ Y = —P'f\ [ va) (1$)

and construct new Krylov vectors using

l\S«t;? = Pﬁ H (Uuw(v — \0‘.,\7 Aen = (U.«-(? gm (’b)

Why not simply use excited states in KL ? Because numerical noise can cause the \U},@

- EYEA

. -tb
to be not exactly orthogonal, hence for J -2 {v. \"fé ) = w -7 rather than 0.

()

This leads to spurious multiple copies of eigenstates (‘ghost states'). For the ground state, the variational
principle ensures that the loss of orthogonality does not become a severe problem. But for excited states, it

does. To prevent this, explicit reorthogonalization is needed at every step, using ?ﬁ , as indicated in (15).

Block-Lanczos for excited states

aO g‘ }
Standard Lanczos: represent action of H as X
! 4 | ‘OL ('Y)
H ('U07 = (Ve 8o + WD b( =7
b .
Block-Lanczos: start with set of M orthogonal vectors, \ J
{UD,;.> ) I = ( e, M , and represent action of H as (19)

Hlwoi) = Wy @), o+ v 5By @

-

with 400/:\\0(,9 = 0 ;

lvlugiy = 1 o

and (ao\3i= ol lue iy B = (o HIvy  w

etc. At each step (‘)f the Lanczos algorithm, orthogonalize each new [ ’, ]té" ] )
block of states, |Un,1) = H |Un-1 ;) , against all states in all ¢

previous blocks, then orthonormalize the states in the new block [ b “ﬁu \[Bz 1 (2)
against each other. Then, the projection of H into the resulting Krylov & L

basis will be block-tridiagonal. The lowest M eigenstates of this matrix r \ ‘.

give the Lanczos approximation for lowest M eigenstates of H. \ ' J
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DMRG.4. Two-site update [Schollwéck2011, Sec. 6.4] DMRG.4

If one encodes symmetries (see Sym-I to Sym-III), then 'one-site update' (discussed above) can get
stuck: if one starts in the wrong symmetry sector, one stays there, because one-site update offers no
way of enlarging the Hilbert space during the variational search to explore other symmetry sectors.
Cure: 'two-site' update, which variationally optimizes two A-tensors at a time.

Represent MPS in site-canonical two-site basis:

D = 10 1g Yalp) B P A A G B B 8

[ «tal
Then extremize simultaneously w.r.t. ~ 3
¥ + CEIHIEY - ACgl = o
Cpand B, © 14 B —ac:l: { IHIG) XS "[)K
Yy | 2T, ¢
W
- 0[\ 0(\ C-_( , B(‘f/ # »
= A 15" 13' 3)
"‘ R '3 ] j‘} L'-'
o
(H1
Y. ) ——
x _ o (‘e f gu, ¢
= A bt (v)
close zippers from left and right Is" 13'
al a ¢
C t (» _ o o -
ngg’g?)ﬁ: { 2 } “[q,i“j = )\ [14“(‘)& with composite index @ = (o!, 6 o, I’;) )
L
and /3&‘
(7-) al (
- 6
(Hl & )
&« g
/“e-. wl weu 2e+z

Va%d
Use Lanczos to find lowest eigenvalue of eigenvalue equation (5), and reshape updated 1(/¢(" :

t
~(’l)x& reshape o a:ﬁ Sub W s \/

updated [ ¢ = —o0—<— I = N&D—e—(}—(—q—«—&-‘! @)

V4 DAT DA Dd
Key point: S has Dd singular values, larger than the virtual bond dimension D  of Qz and B4,
Hence, it explores a larger state space, in general also including more symmetry sectors!

Truncate down to 1) and reshape: Ay "(“u) ( S U’f);:C“' A, Caer
This get rid of 'bad' symmetry sectors. = Ni_b__»Q_eq—e-EF’ = ~ E ?-e- p e
Va D D DA . -
a

This concludes optimization of site «e . Now move one site to the right and repeat. Sweep back and
forth until convergence of full chain (i.e. ground state energy converges).

Cost of 1-site DMRG:  ()(D dww + D' ol'es®)  Costof 2-site DMRG: O D*dl*wr + 0 d* ) 10)
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