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Maging In treatment planning

 Treatment planning firstly requires the identification of the radiotherapy structures using anatomical and functional
information from diagnosticimages

* The target definitionis based on the X-ray CT image, as primary anatomical image

* Secondary images as positron emission tomography (PET) (i.e., functional information) and/or magnetic resonance
imaging (MRI) (i.e., functional and anatomical information) can complement the target definition

PET image CT image
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= The functionalidentification of the target can be used for “dose painting”

= 18EDG-PET (Fluorodeoxyglucose): glucose uptake and metabolism
= 18F_-HX4-PET (Fluorin-nitroimidazole): molecular retention correlated to tumor hypoxia

FDG-PET F-HX4-PET

Grootjans et al. Nat. Rev. Clin. Oncol. 2015
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in treatment planning

= The treatment planning is an inverse problem and requires numerical optimization to define the beam parameters (i.e.,
inverse treatment planning), based on:

= Definition of the treatment geometry (i.e., target and critical organs identification)
= Patient model as physical characterization of the patient (i.e., tomographic image reconstruction of the properties of
the radiationin tissue)

= photon attenuation (X-ray CT)
= jon stopping power relative to
water (ion CT)

o e

Relative range difference compared to the reference [%]

Meyer et al. Phys Med Biol. 2019
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* Treatment planning aims to match the dose value of the PTR (planning target region) to its prescribed value while limiting
dose valuesin the surrounding OAR (organ at risk) and HT (healthy tissue) to tolerable limits

* In particular, OARs are highly sensitive to radiation exposure and require lower dose values than HT
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in treatment planning

* Intensity modulated radiation treatment (IMRT) and volumetric modulated arc therapy (VMAT)

* High precision conformation as overlay of multiple discrete
(IMRT) or continuous (VAMT) 3D dose distributions

e The intensity of the radiation beam is subdivided in

multiple beam-lets
Nguyen, B. T., Hornby, C., Kron, T., Cramb, J., Rolfo, A., Pham, D., ... &

Foroudi, F. (2012). Optimising the dosimetric quality and efficiency of
post-prostatectomy radiotherapy: A planning study comparing the
* |lon beam thera Py performance of volumetric-modulated arc therapy (VMAT) with an
optimised seven-field intensity-modulated radiotherapy (IMRT)
technique. Journal of Medical Imaging and Radiation Oncology, 56(2),
211-219.

* High precision conformation as stack of multiple iso-energy
2D dose distributions Faces of dipole magnets Tumor

* The intensity of the radiation beam is subdivided in
multiple pencil beams

First magnet Second magnet

(horizontal (vertical
scanning) scanning) Last layer First layer
(minimum (maximum
energy) energy)

Durante, M., & Loeffler, J. S. (2010). Charged particles in radiation
oncology. Nature reviews Clinical oncology, 7(1), 37-43.
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in treatment planning

» Stereotacticradiationtherapy (cranial SRT) and stereotactic body radiation therapy (SBRT)
e High precision and high dose conformation as overlay of multiple 3D dose distributions, delivered from fixed points
in space called nodes, arranged in spherical (intracranial applications) or ellipsoidal (extracranial applications)

configurations

 The combination of nodes and pointingvectors provides a set of “elementary beams” to plan the treatment

http://www.cyberknifendc.com
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* Discretization of the dose distributionintoa grid of dose points

* Beam-let or pencil beam: elementary radiation beam with fixed intensity

* Beam: beam-lets or pencil beams with fixed angle ¥ or fixed energy

* Modeling of the inverse problem of treatment planning as matrix-

vector product:
fi = Z i gi

i

. f] is the dose distributionin the pixel/voxel or control point j

* g;istheunknown weight of the beam-let or pencil beam i

* a;j is the dosimetric contribution of the beam-let or pencil beam i to the pixel/voxel or control point j
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= The inverse problem of treatment planning is concerned with determining the non-negative weights g; that results in
optimal dose distribution f;

" a;j can be interpreted as the dose per unit of time deposited at pixel or control point j by the beam-let or pencil
beam i, and g; is the time the beam-let or pencil beam i is kept on

" aq;jisreferred to as the dose calculation matrix

= model-based algorithms (convolution-superposition methods based on dose kernels scaled according to the
electron density or relative stopping power of the heterogeneity)

= correction-based algorithms (semiempirical approachesto account for tissue heterogeneity)

= Monte Carlosimulations

Oelkfe, U., & Scholz, C. (2006). Dose calculation algorithms. In New technologies in
radiation oncology (pp.187-196).Springer, Berlin, Heidelberg.
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= |n photon beam therapy (IMRT), M beams (different angles) are needed to conform the dose distribution to the target
= Inionbeam therapy, M beams (different energies) are needed to conform the dose distribution to the target
= The model of the inverse problem becomes a F = AG matrix-matrix product with:

= Fis the matrix of optimal dose distribution for each m=1:M (JxM matrix)

= A is the matrix of the geometrical contribution of the beam-let or pencil beam to the pixel (Jx/ matrix), referred to as
dose calculation matrix

= (@ is the unknown (intensity) weight matrix of each beam-let or pencil beam, for each m=1:M (IxM matrix)

= Theinverse problem of treatment planning is concerned with determining the non-negative weight matrix G that results in
optimal dose distribution F
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initial beam
parameters
—> forward-calculation of the dose f f] @

v

objective function* (Newton's method) (7/ prescribed dose f /

no ¢

updated weights g = argming F(Aglf)

Optlmél beam
weights

* the objective function can be either voxel-based or organ/DVH-based, the violation of the DVH constraints can be
adopted as penalty function
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 Newton's method of objective function minimization is based on the approximation of Y(f) as a quadratic function in the
neighborhood of the minimum fmin

* The objective function can be approximated byits Taylor series expansion as:
f f)~y(f f'V. w(f L f V2w (f  )f
l//( min T ) Nl//( min)+ fl//( min)+§ fW( min)

where the Gradientvector and the Hessian matrix (H) are defined as:

oV Oy v
of, 2 of,° of , of,
Vfl//(fmin): \% fW(fmin): 2 2
oy oy oy
2
afN / f:fmin 6f16fN afN f=fimin

* Implementations of inverse treatment planningdiffer from objective function approximations



LUDWIG-
MAXIMILIANS-

UNIVERSITAT
MUNCHEN

 Newton's method finds the minimum fmin when the gradient of (f) is equal to zero:

Vo (fn) + Vi () =0
f = _(vsz(fmin))_lvfl//(fmin)

* The inverse Hessian matrix can be not exact (HH1 # identity matrix)

* lterativealgorithms are adopted to compute an approximation ofthe inverse Hessian matrix (quasi-Newton methods)

_ 1 -1
fn+1 - 1:n -H Vf')”(il:n)
* Implementationsof inverse treatment planningdiffer from inverse Hessian matrix approximations
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* Being f=Ag, and therefore g=A-lf, the objective function minimization is expressed as:

1:n+1 — 1:n o ﬁ_1Vf§”(.|:n)

gn+1 gn 1H 1Vfl//(f ) gn 1H 1A lVgW(f )

* Aljstheinverse dose calculation matrix

* The two gradient vectors are related according to:

* Implementationsof inverse treatment planningdiffer from inverse dose calculation matrix approximations
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* Closed-form least square optimization

Hessian

ATA)‘ ATf

J

Imin = aTgmiTl f) — Z ajl-gl- gmin :<

7 Gradient

* Numerical (iterative) optimization or iterative inverse treatment planning

f}- —_ Zl ajigin Xing, L., & Chen, G. T. (1996). Iterative methods for inverse treatment
planning.Physicsin Medicine & Biology, 41(10), 2107.

n+1 _ Moy

9i = i 2 " 4jj
Ziaji
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Conventional radiotherapy treatment planning consists of inverse optimization to determine the radiation beam
weights (i.e., g;) based on the treatment planningX-ray CT image and the dose prescription (i.e., f;)

The optimized radiation beam parameters need to be manually adjusted with trial and error (time-consuming and
labor-intensive)

Artificial intelligence, including machine learning and deep learning, has been recently proposed to automate
radiotherapy treatment planningand improve treatment planning quality and efficiency

Automated treatment planningincludes
* Automated beam orientation selection (i.e., pre-defined angles of the beam-lets)
* Automated dose distribution prediction (i.e., forward-calculation of the dose)

* Automatedradiation beam parameters estimation (i.e., the weights)

Wang, M., Zhang, Q., Lam, S., Cai,J., & Yang, R. (2020). A review on application of deep learningalgorithms in
L _ — _ ot blannine o i
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* Theimage segmentation of the tumor and the organs at risk (OARs) is a time-consuming process, on a slice-by-slice basis
when manually performed, subject to significantinter-and intra- operator variability

 Automatic segmentation (i.e., auto-segmentation) enables the automation and standardization of this process

 Conventional auto-segmentation is based on the primary (and
secondary) image(s) of the individual patient

 Auto-segmentation based on atlas exploits prior knowledge from a
cohort of patients as a ground truth organ segmentation

« The segmentation is adapted to the individual patient according to
deformable image registration (DIR)

* Auto-segmentation based on DL embeds prior knowledge from the
cohort of patients into a parameterized model that is optimized to
match the ground truth segmentation during the training Schreibmann & Fox 2012 J. Appl. Clin. Med. Phys.
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 Because of the local nature of the segmentation, DL-based auto-segmentation is typically based on fully convolutional
neural networks

 The architecture of the commercial DL-based auto-segmentation networks is mostly undisclosed but some are reported
being based on modifications of the U-net

* The deep image-to-image network (DI2IN), commercially available in Siemens Healthineers systems, is based on a
convolutional encoder-decoderarchitecture combined with multi-level feature concatenation

Clinical evaluation at LMU Klinikum

O Concatenation

Cin -
Conv-RelLU-BN (S=1)

Conv-ReLU-BN (S=2)

Marschner et al. 2022 Radiat. Oncol.

trilinear
interpolation

convolution with stride 2
instead of pooling
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MU

e The accuracy of the DL-based auto-segmentation is expected within the inter-operator
variability, as the network cannot perform better than the manual segmentation adopted as
ground truth

Eyeballs Optic chiasm — | Manual segmentation |

. bladder | rectum bladder | rectum
| Al-based auto-segmentation | ST 05| 5 BT

| Atlas-based auto-segmentation |

2|A N B
DSC(A,B) = A 18

| Dice-Sgrensen coefficient | e

bladder | rectum bladder | rectum
SEG, | 0.96 0.89 SEG, | 0.97 0.90

DSC

bladder | rectum bladder | rectum

Urago et al. 2021 Radiat. Oncol. SEG, | 092 | 0.1 SEG, | 095 | 0.8
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e Conventional treatment planning consists in the solution of an inverse problem to optimize the radiation beam
parameters that match the prescribed dose on the tumor, including dosimetric constraints for OARs and normal tissue

Dose distribution

v

Interaction model

v

Radiation beam

 The direct problemis referred to as dose calculation, the inverse problem as treatment plan calculation

PET/MRI ( PET/CT ‘ treatment plan

Thorwarth et al. 2013 Clin. Transl. Imaging
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e Artificial intelligence enables to automate different steps of the treatment planning and improve treatment planning

quality and efficiency

e The automation is based on the anatomy-to-dose
correlation inferred from a cohort of clinical treatment
plans

e The prediction of the dose distribution can be
implemented as a case/atlas-based ML regression (i.e.,
ML-based regression from a cohort of similar cases
which is usually referred to as knowledge-based
radiation therapytreatment) or as DL-based inference

e The predicted dose distribution per se does not
account for the physics of the beams, thus, dose
mimicking optimization then converts the dose
distribution to a deliverable treatment plan

Dose estimation

Clinical

Dose mimicking Clinical

Dose mimicking

Mclntosh et al. 2017 Phys. Med. Biol.
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DL-based auto-planning

« Commercial knowledge-based radiation therapy treatment planning software are currently used in the adaptive radiation
therapy workflow

e VarianEthos

* Ray Station

Varian Ethos Ray Station

e DL-based auto-planning is typically based on deep fully convolutional neural networks combined with residual connections
such as Res-Net, DoseNet and modified U-net



LUDWIG-

MUONCHEN

MAXIMILIANS-
UNIVERSITAT

The networks are trained on 2D or 3D images describing patient geometry in terms of CT image, segmented target and
OARs (input) and the manually optimized ground truth dose distribution (target)

DL-based auto-planning

The Res-Net - deep residual neural network - is trained on

3D images for intensity-modulated
(IMRT) in head-and-neck cancer cases

PTV

OAR (label) CcT

(prescribed
dose)

Fan et al. 2019 Med. Phys.

radiation therapy
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* Convolutional layers to down-sample the

feature maps - o i
' Input and & convolution blodx ) i bmf
output block SBE S — ey
H '“’1 Convolution Identity H/ I/ 'ﬂﬂ
e Deconvolutional layers to up-sample the | e blck e | '
. . o . o 1 Sum =
feature maps and recover the image el ' [ 0|

details

Sum

* Links between convolutional and
deconvolutional layers with multiple skip-
layer connections (tackling the problem of
gradient vanishing and passing of image
details)

256x256

Dose
distribution

128x128

Sum

Fan etal. 2019 Med. Phys.
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DL-based auto-planning

A modified U-Net — well known deep neural network made of several hierarchical levels - is trained on 2D images
treated as channels for a slice-by-slice prediction of the 3D dose distribution of intensity-modulated radiation therapy

(IMRT) for prostate cancer patients

* The ground true dose is the dose distribution [ Contours Ground truth
explicitly informed about the physics of the
beamlets

e The predicted dose is the dose distribution
informed about the physics of the beamlets
through the treatment planningdata Difference Predicted

Nguyen et al. 2019 Sci. Rep.
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e Contoursof PTV and OARs treated as channels

* Fully convolutional network, originally designed for % AP
segmentation purposes

2%2
¥
¥

* Large number of max pooling operations to allow
for the convolution filters to find higher level global
features

e Transposed convolution operations (i.e.,
deconvolution or up-convolution) to return the
image to its original size

384 384 384

* Copying the maps from the first half of the U-net in
order to preserve the lower-level local features

g feature map P 3x3 convolution, ReLU, Batch Normalization P 3x3 convolution, ReLU

2x2 transposed convolution with 2x2

D Bgpiesdsature g s stride, ReLU, Batch Normalization

¥ 2x2 max pooling

> copy layer

Nguyen et al. 2019 Sci. Rep.
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auto-planning

The DoseNet - deep residual neural network based on convolutional down- and up- sampling - is trained on 3D images
for non-coplanarprostate stereotactic body radiotherapy (SBRT) patients

Clinical

*® 5x5x¢5 Cowolution * Resdual Block = »Concatenated Block

yp—t
128x128xB4x32 || |

| 128x128<64x16
1 & oo
=iy O |
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Dose Differance €

PG P ——

Kearney et al. 2018 Phys. Med. Biol.
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DL-based auto-planning

 HD U-net - Hierarchically Densely connected U-net based on U-net and DenseNet architectures - is trained o 3D images
for head and neck cancer patients treated with volumetric-modulated arctherapy (VMAT)

* DenseNet is similarto ResNet, but the convolution outputis concatenated, rather than added

HD U-net
: | |__
o e ‘ 41 \ .,
Clinical ) Ls ‘ :
; e 3 ; g 167 181 199
PR { 3
- ! || || Ml - W T
135 151 _’l'\ 3 247
III i ||| - |||_|1_||||| d
80.0 125¢ 12 > 5 A > i 1 M = S
70.0 Standard U-net
T 2afazhaz at|azfazs
X
60.0 b
|1;H Bl
50.0 4 ”_2_5 128 4128
512 258 *
T|Il_|_.' o o
40.0
DrenseNet
I1P|‘P4I|'1IIII°1II||||||||'|I|IIII|||||4III|II
=
Fhlt
e hlack 1 =
20.0
Legend Dense Convolve U-net Upsample
10.0 | Input Zero padded 3 3 3 2 3 conwolutdon, ReLU J_ J_ | |
lUulnut 2342 2 Max pooling IE 3 o
35 ealey
DenseNet
|r dor led f

Nguyen et al. 2019 Phys. Med. Biol.
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* The GAN architecture is proposed to replicate the role of the treatment planner (the generator that performs the task)
and the role of the radiation oncologist that evaluate the treatment planner (i.e., the discriminator that evaluates the
performance of the generator)

dose

Gradients from loss function

Training . Testing
..f""# ‘\'“-\, : .'-"'f
4\ » Predicts which i
— G D) |— is generated ! ¥ — ) — ‘T
Contoured . . E!.nd jm.-lmh : Contoured Generated
CT image - is clinical : CT image dose
H‘\-}"‘- Generated -"'T.j E ‘-“""‘--

Babier et al. 2020 Med. Phys.
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* Al-based auto-planning is also reported to estimate the radiation beam parameters without inverse optimization (i.e., the
inverse problem)

* The prediction of fluence map per beam requires the predicted field dose projected onto the beam’s eye view

Benchmark Predicted fluence .
Difference
fluence map
> N
J T
0.20 0.20 .- .3% e
£ ‘IE_ 0.05
Direct Plan Generation I n il - " 3 0.00
i Field Dose Prediction :: Fluence Map Prediction ; i i ' s | e 1 5
;: FM-CNN ! 0o o T - o
BEV @ : Model- 0.00 0.00 ’
Dose il _:_. Prcled
Ma s H 2
; Dose for predicted .
o @ i Difference |

fluence map

Benchmark
Plan Total Dose
Comparison

Wang et al. 2020 Front. Artif. Intell.
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DL-based auto-planning

* The prediction of fluence map per beam requires the contours (i.e., target and OARs) and the volumetric dose
distributionsviewed from the beam’s eye view (BEV) of a single beam

e Cony 363, Rell, batch nom -'- Decorn , 2a2, sbride 2, Rell, balch aoemm
Corm, 2x2, stride 2, Rell), batch nanm Corw 1xl - Sk CONMECTGN

BrTVv Rectum [MBladder Right femoral head
Left femoral head M Avoiding structure  [|Body

Lee et al.Scirep 2019
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A 3D dose distribution can be predicted by training artificial neural networks based on patient-specific geometric (i.e.,

based on CT image and structures) and planning (i.e., the closest distance to planning target volume (PTV) and organ-at-
risks (OARs), number of beams irradiatingthe voxel ...) parameters

Feed-forward networks with a limited number of layersand nodes

Two-layer feed-forward network, ten nodesin the first layer, one single node in the second layer!

Multiple feed-forward networks with 1-3 hidden layers, each layer with 10-50 nodes?

* Two separated artificial neural networks are
trained for voxels within and outside the PTV

due to very different dose distribution
patternsin the two regions

Parameters ANN Dose value

1Shiraishi, S., & Moore, K. L. (2016). Knowledge-based prediction of three-dimensional dose
H HHR distributions for external beam radiotherapy. Medical physics, 43(1), 378-387.
. 7’ ’
Wea k genera ||Za bl I Ity 2Campbell, W. G., Miften, M., Olsen, L., Stumpf, P., Schefter, T., Goodman, K. A., & Jones, B. L.
(2017). Neural network dose models for knowledge-based planningin pancreatic SBRT.
Medical physics, 44(12),6148-6158.
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* Treatment planningconsists in the solution of an inverse problem

* Treatment planning in high precision 3D conformal radiotherapy relies on optimization algorithms (analytical methods can
only be applied to geometrically simple cases)

* Numerical methods are required for geometrically complex cases
* Many degrees of freedom
* Many beam-lets or pencil beams

* High degree of flexibility in dose distribution

* The role of machine learning in treatment planning is relevant to the automation of tasks to support (or accomplish) the
planningof the treatment

* Auto-segmentation
* Auto-planningas dose estimation (i.e., solution of the forward-problem) or actual inverse problem solution
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