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Introduction to deformable image 
registration

▪ Deformable image registration is a numerical optimization that aims at determining a spatial transformation that relates
positions in one image (reference or fixed image) to the corresponding positions in another image (target or moving
image)

▪ The aim is to compare and integrate the information given by different images

Moving image
Fixed image

Transformation



Image registration algorithm

▪ The numerical optimization is based on the metric, chosen according to the two image modalities, and iterative updates of
the transformation parameters

▪ The moving image (undergoing transformation) requires interpolation based on the voxel grid of the fixed image

Fixed image Moving image

Interpolation

Metric calculation

Transformation update

Transformation

▪ Input: fixed image and
moving image

▪ Output: transformation
parameters



Metric calculation

▪ The metric is defined on the gray levels of the two images

▪ The gray levels of mono-modality images expresses the same information and they are directly comparable (image
differences, mean square errors, root mean square errors, correlation coefficients…)
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▪ The gray levels of multi-modality images expresses different information and “information processing” is need to
compare them

▪ Mutual information (MI)

▪ Normalized Mutual Information (NMI)



Mutual information

▪ In information theory, the mutual information of two random variables X and Y, 𝐼(𝑋; 𝑌), is a measure of the mutual
dependence between the two variables

▪ Mutual information quantifies the "amount of information“ (in bit, if the logarithm base is 2) obtained about one random
variable through observing the other random variable

𝑀𝐼 = 𝐼 𝑋;𝑌 = 

𝑦∈𝑌



𝑥∈𝑋

𝑝 𝑥, 𝑦 log(
𝑝(𝑥, 𝑦)

𝑝 𝑥 𝑝(𝑦)
)

▪ 𝑝(𝑥) and 𝑝(𝑦) are the marginal probability functions of X and Y,
respectively

▪ 𝑝(𝑥, 𝑦) is the joint probability function of X and Y

▪ 𝐼(𝑋; 𝑌) = 𝐼(𝑌;𝑋) ≥ 0 symmetric and non-negative

▪ 𝐼(𝑋; 𝑌) = 0 if X and Y are independent random variables, so that
𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦)



Mutual information

▪ The mutual information can be expressed in terms of Shannon entropy 𝐻(𝑋) as a measure of uncertainty of a random
variable
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▪ 𝐻(𝑋) and 𝐻(𝑌) are the marginal entropies

▪ 𝐻 𝑌 𝑋 is the conditional entropy of Y given X measuring the amount of uncertainty remaining about Y after X is
known (and vice versa)

▪ 𝑝 𝑦 𝑥 and 𝑝(𝑥|𝑦) are the conditional probability
functions

▪ The conditional probability functions and the joint
probability function are related according to: 𝑝 𝑥, 𝑦 =
𝑝 𝑦 𝑥 𝑝(𝑥) and 𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝(𝑦)



▪ 𝑝(𝑥) (to calculated 𝐻(𝑋)) is the histogram of gray level occurrences of the fixed image

▪ 𝑝(𝑦) (to calculated 𝐻(𝑌)) is the histogram of gray level occurrences of the moving image

▪ 𝑝 𝑥, 𝑦 (to calculate 𝐻(𝑋, 𝑌)) is the joint histogram of the gray level occurrences of the two images 

Mutual information
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Mutual information

▪ Realistic joint histograms for different rigid
translations (Δ)

▪ The mutual information is a measure of the joint
histogram dispersion

▪ To reduce the influence of background, the
normalized mutual information can be calculated

𝑁𝑀𝐼 =
𝐻(𝑋) + 𝐻(𝑌)

𝐻(𝑋, 𝑌)



Transformation parameters

▪ The parametrization for rigid registration is given by 6 parameters (3 for translation and 3 for rotations)

▪ The order of operations (translation and rotations)matters…

▪ The parametrization for affine transformation is given by 12 parameters (3 for translation, 3 for stretching/scaling, 3 for
shearing and 3 for rotations)

Translation Rotation across x Rotation across y Rotation across z



Transformation parameters

▪ The parametrization for deformable registration is given by 3 translational parameters for each voxel (2 translational
parameters for each pixel)

▪ The parameter matrix, provided with and additional dimension with respect to the image, is typically referred to as
“deformation field”

x 
translation 
parameters

y 
translation 
parameters

z 
translation 
parameters



▪ To reduce the amount of parameters, the deformation field can be defined in control points (grid coarser than the voxel
grid) and modeled elsewhere in terms of coefficients and basis functions

▪ The B-spline coefficients 𝑃(𝑖, 𝑗, 𝑘) are optimized on the B-spline grid in (𝑖, 𝑗, 𝑘) and subsequently calculated according to
the B-spline basis functions (pre-calculated) in (𝑥, 𝑦, 𝑧)

Transformation parameters

Deformation Field

BSpline

Coeffiecients



▪ Push-forward formalism: the deformation indicates the voxel of the moving image to be pushed-forward

▪ The gray levels of the moving image are maintained but can create hole and overlap

Formalism in parameterization

3 -2 1 2

Moving image

Push this pixel away of
3 positions forwards
(positive)

Push this pixel away of
2 positions backwards
(negative)



▪ Pull-back formalism: the deformation field indicates the voxel of the moving image to be pulled-back

▪ The gray levels of the moving image are not maintained as they can be repeated or missed but no hole and overlap
are created

Formalism in parameterization

Moving image

3 -2 1 2

Pull here the pixel of 3
positions forwards
(positive)

Pull here the pixel of 2
positions backwards
(negative)



Optimization

Fixed image Moving image

Interpolation

Metric calculation

Transformation update

Transformation

▪ The numerical optimization aims at finding the “best” transformation parameters according to an objective function
defined by the chosen metric

▪ Different numerical optimization algorithms can be adopted for deformable image registration



Gradient descent

▪ First-order iterative optimization algorithm for finding the local minimum of the objective function using gradient descent

▪ Update steps proportional to the negative of the gradient (or approximate gradient) of the objective function at the
current point

▪ Initialize 𝑥0

▪ Compute𝛻𝑓(𝑥𝑛)

▪ Update 𝑥𝑛+1 = 𝑥𝑛− 𝛼𝛻𝑓(𝑥𝑛) (𝛼 is the step size)

▪ Stop (stopping criteria on 𝑛 or 𝑥𝑛 and 𝑥𝑛+1)



Newton method

▪ Second-order iterative optimization algorithm for finding the local minimum of the objective function using first and
second derivatives of the objective function
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▪ Update steps account for also for curvature (second derivative) of the objective function at the current point



▪ Simplex has 𝑛 + 1 vertices, each vertex is described by 𝑥𝑛 ∈
𝑅𝑛

▪ Update of the vertex position 𝑥𝑛 based on the evaluation of
the objective function 𝑓:𝑅𝑛 → 𝑅 at each vertex position

▪ Replacement of the worst vertex by the reflected centroid of
the remaining 𝑛 vertices across the opposite best face of the
simplex

▪ Expansion or contraction and shrinkage

▪ The simplex moves towards the minimum of the objective
function

Nedler-Mead algorithm

▪ “Direct” (without derivative calculation) iterative optimization algorithm for finding the local minimum of the objective
function based on adjustment of the simplex



• Deformable image registration is applied between the treatment planning CT (moving image) and the “CT of the day”
(fixed image) to obtain a deformation field to be applied to the treatment planning CT and the contours (contour
propagation) for adaptive radiation therapy

• Radiotherapy is typically administered in a fractionated treatment course entailing a few days (for hypofractionated
treatment regiments) up to several weeks (for standard fractionation) of almost daily dose applications

Rigid alignment of 
contour

Contour propagation

Treatment planning CT of the day

Contours

CT of the day

Schwartz et al. 2012 Int. J. Radiat. Oncol. Biol. Phys.

Deformable image registration for 
treatment adaptation



• Adaptive radiation therapy is a closed-loop radiotherapy workflow, applicable both to conventional photon therapy and
to ion beam therapy, where the treatment is adapted to the patient based on anatomical information provided by in-
room imaging within the fractionated treatment course

• On-line – prior to the
current fraction

• Off-line – prior to the
subsequent fraction

Treatment 
planning

Treatment 
delivery

Off-line 
treatment 
adaptation

Treatment
verification

On-line 
treatment 
adaptation

Treatment delivery scenario (in-room)Treatment planning scenario

Winter et al. 2023 Curr. Treat. Options Oncol.

protons photons

Adaptive radiation therapy



• When in-room volumetric imaging such as cone beam computed tomography (CBCT) is available, the treatment plan can
be updated on-line based on this imaging

• CBCT is clinically used for patient position verification and treatment adaptation based on the in-room CBCT requires
correction for scattering and noise, either based on deformable image registration (DIR) as virtual CT image, along with
contour propagation, or scatter correction techniques

• The role of AI is relevant to the definition of models for converting the in-room imaging into a suitable image for
treatment planning while accounting for the occurred anatomical changes, as synthetic CT image

Nesteruk et al. 2021 Cancers

Treatment planning CT CBCT Virtual CT

Adaptive radiation therapy



• A cycle generative adversarial network (CycleGAN) is proposed as unsupervised learning without fully relying on paired CT-
CBCT images (supervised training is very difficult in these scenarios)

• Synthesized CT images are obtained from CBCT images for adaptive radiation therapy with artifacts removed or greatly
reduced and intensities corrected while keeping the anatomical accuracy

• The synthesized CT images are used for dose calculation in adaptive radiation therapy

Synthetic CT image

Liang et al.2019 Phys. Med. Biol.

CBCT deformed 
CT

CycleGAN
CT



• Cycle-GAN includes two generators

• The first aims to map from CBCT to CT

• The second aims to map from CT to CBCT

• Cycle-GAN includes two discriminators

• The first aims to distinguish real CT from fake CT

• The second aims to distinguish real CBCT from fake
CBCT

Synthetic CT image



• Generator (U-Net)

• U-Net-type architectures with
encoder/decoder arms

• Fully convolutional framework provided
with skip connections

• Discriminator (patchGAN)

• Encoder classifiers

Synthetic CT image



• Two cycles are included in Cycle-GAN

• In the first cycle, the CBCT is used as input to the first generator, which generates the synthetized CT. Then, the second
generator takes the synthetized CT as input and generates the cycle CBCT, which is supposed to be equal to the CBCT

• Meanwhile, the first discriminator identifies real and synthetized CT images

• The CT label is 1 and the synthetized CT label is 0

• In the second cycle, the CT is used as input to the second generator which generates the synthetized CBCT. Then, the
first generator takes the synthetized CBCT as input and generates the cycle CT, which is supposed to be equal to the
CT

• Meanwhile, the second discriminator identifies real and synthetized CBCT images

• The CBCT label is 1 and the synthetized CBCT label is 0

Synthetic CT image



• The Cycle-GAN is a variant of the GAN that introduces a cycle-consistency loss using two generators and two discriminators

• GAN training proceeds in alternating:

• (1) the discriminator is trained for one or more epochs while keeping the generator constant (i.e., minimization of the
discriminator loss) to optimize the faking capability of the generator

• (2) the generator is trained for one or more epochs while keeping the discriminator constant (i.e., maximization of the
adversarial loss) to optimize the fooling capability of the discriminator

• Repeat (1) and (2)

Synthetic CT image



• The soft tissue contrast offered by MRI is exploited without recurring to inter-modality image registration

• The patient exposure to ionizing radiation is reduced, along with treatment cost and workload, thus enabling on-line daily
re-planning in MR-guided radiotherapy systems

MRI-only radiotherapy

• Conditional generative adversarial network
(cGAN) as supervised version of GAN based
on paired images (i.e., DIR)

• Generator based on U-Net
architecture, producing data consistent
with the “condition”

• Discriminator based on convolutional
“PatchGAN” classifier, receiving
information about the “condition”

Tenhunen, M., Korhonen, J., Kapanen, M., Seppälä, T., Koivula, L., Collan, J., ... & 
Visapää, H. (2018). MRI-only based radiation therapy of prostate cancer: workflow 

and early clinical experience. Acta Oncologica, 57(7), 902-907.

Maspero, M., Savenije, M. H., Dinkla, A. M., Seevinck, P. R., Intven, M. P., Jurgenliemk-Schulz, I. M., ... & van den Berg, C. A. (2018). Dose evaluation of fast
synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy. Physics in Medicine & Biology, 63(18), 185001.



• Image registration is used at different stages in radiation oncology

• Patient positioning is based on rigid registration

• Multi-modality treatment planning, atlas-based segmentation in treatment planning and treatment adaptation are
based on deformable image registration

• Deep learning is adopted to replace the role of deformable image registration with advantages in term of quality and
efficiency

• Automatic contouring (i.e., auto-segmentation) of targets and organs at risks for treatment planning

• Treatment adaptation as“syntheticCT image” generation based on CBCT imaging

• Image quality of the CBCT is inappropriate for treatment planning (compromised by artifacts and scattering
effects)

• Treatment planning and treatment adaptation as “synthetic CT image” generation based on MRI (i.e., “MRI-only
radiotherapy”)

Outlook


