

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN Fakultät für Physik im WiSe 2023/24 TA1: Condensed matter physics Dozent: Dr. Sebastian Paeckel Exercises: Zhaoxuan Xie

https://www2.physik.uni-muenchen.de/lehre/vorlesungen/wise_24_25/TA1_theoretical_ condensed_matter/index.html

Problem set 6

Problem 1 Dynamic conductivity in the Drude model

We want to compute the Drude conductivity $\sigma_D(\omega)$ for the case of an oscillatory electric field $\vec{E} = \vec{E}_0 e^{i\omega t}$ with frequency ω . Show that it has the form

$$\sigma_D(\omega) = \frac{ne^2\tau}{m_e} \frac{1}{1 - i\omega\tau} \,. \tag{1}$$

Why can $\sigma_D(\omega)$ be complex, what is the physical reason behind this fact? Show that $\sigma_D(\omega)$ becomes independent on τ in the limit $\omega \to \infty$ and give a physical explanation for this observation.

Problem 2 A handy theorem

Let $\hat{H}(\lambda)$ be the Hamiltonian of a system, which is parametrized by λ , and $|n(\lambda)\rangle$ its (nondegenerate) eigenstates. Show that

$$\frac{\partial E(\lambda)}{\partial \lambda} = \langle n(\lambda) | \frac{\partial \hat{H}}{\partial \lambda} | n(\lambda) \rangle , \qquad (2)$$

with $E(\lambda) = \langle n(\lambda) | \hat{H}(\lambda) | n(\lambda) \rangle$.

Problem 3 Singularities everywhere

For a d-dimensional cubic lattice model with lattice constant a, we consider a dispersion relation of the form

$$\varepsilon_{\vec{k}} = -2t \sum_{\mu=1}^{d} \cos(k_{\mu}a) , \qquad (3)$$

where k_{μ} are the spatial components of \vec{k} .

- (3.a) Compute the density of states for d = 1 and determine the nature of the Van Hove singularities. Use eq. (2) to find those regions in momentum space, in which the velocity is (anti-)parallel to the momentum.
- (3.b) For the case d = 2, determine the energy $\tilde{\varepsilon}$, which exhibits a Van Hove singularity. Expand the density of states in the vicinity of $\tilde{\varepsilon}$ to the leading order in $\varepsilon_{\vec{k}}$.