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Problem set 4

Problem 1 The Born-Oppenheimer approximation: Ménage à trois

In the lecture we introduced the adiabatic approximation (also known as Born-Oppenheimer
approximation) to decouple the electronic degrees of freedom from the nuclei, such that they
only act as an effective potential between the nuclei. In this exercise, we want to illustrate this
mechanism at the example of a one-dimensional toy model for a molecule composed of a single
electron with mass m and two nuclei with masses M1,M2, imposing m ≪M1,M2. We assume
that a good approximation for the potential of this 3-body problem is given by

V (X1,X2, x) = −
K1

2
(X1 −X2)2 +

K2

2
[(x −X1)2 + (x −X2)2] , (1)

where X1,X2 denote the coordinates of the nuclei and x the coordinate of the electron. Note that
the first summand describes a repulsion between the nuclei while the second describes an attraction
between the electron and the nuclei (why?).

(1.a) Use the adiabatic approximation to derive the effectve potential U(X1,X2) between the
nuclei and find the stability condition on the effective coupling constants K1,K2 such that
the molecule is stable.

(1.b) Assuming that the stability condition holds true, derive the classical oscillation frequency of
the coupled nuclei.

(1.c) This three-body Hamiltonian can actually be solved exactly because it is nothing else but
coupled harmonic oscillators. Find the corresponding frequency in the exact solution, and show
that it is identical to what you found in (ii), for the special case of M1 =M2. For M1 ≠M2,
show that the exact frequency approaches the result in (ii) in the limit m≪M1,M2. Give
a physical explanation why the adiabatic approximation is exact (in this toy model) when
M1 =M2.

Problem 2 Phonons in a diatomic chain

We consider a one-dimensional chain with a two-site basis of harmonically coupled nuclei with mass
M and alternating spring constants K1,K2. We denote the lattice constant spanning the unit cell
by a.

(2.a) Solve the classical equations of motions using the plane-wave ansatz discussed in the lecture
and determine the dispersion relation ω(q).

(2.b) Consider the limit q ≪ π/a and expand the dispersion relation to the first non-trivial order.
Show that you obtain an acoustic and a gapped optical branch.
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(2.c) Now assume that K2 ≫K1. Expand the dispersion relation to the first non-trivial order in
K1/K2 and show that you obtain an acoustic branch corresponding to a chain of diatomic
molecules with mass 2M and spring constant K1.

Problem 3 The Debye-Waller factor of an acoustic phonon and what we can learn from it

In this problem we want to compute the Debye-Waller factor e−2Γk⃗ introduced in the lecture
explicitly for a d-dimensional system with a single acoustic phonon mode with dispersion relation
h̵ω(k⃗) = h̵vs∣k⃗∣.

(3.a) We begin by computing

Γk⃗ =
1

2
⟪(k⃗ ⋅ ˆ⃗Xj)2⟫ , (2)

where ˆ⃗Xj denotes the displacement operator of the jth atom at R⃗j and is given in terms of

the ladder operators â
(†)
k⃗

of the harmonic oscillator by

ˆ⃗Xj =
1√
N
∑
k⃗

ϵ⃗

¿
ÁÁÀ h̵

2mω(k⃗)
(â

k⃗
+ â†
−k⃗) e

ik⃗⋅R⃗j . (3)

Show that

Γk⃗ = (ϵ⃗ ⋅ k⃗)2
h̵

4m ∫(1.BZ)
ddk⃗

(2π)d
coth(βh̵ω(k⃗)/2)

ω(k⃗)
. (4)

(3.b) Determine the Debye-Waller factor for the case d = 3. For that purpose, replace the integration
domain (first Brillouin zone) by a sphere with radius kd. Expand your result for the case
of high temperatures βh̵vskd ≪ 1 and low temperatures βh̵vskd ≫ 1 to the first non-trivial
order.

(3.c) Show that the Debye-Waller factor diverges in d = 2 dimensions. Explain how and why
this is consistent with the Hohenberg-Mermin theorem stating that in a system with short-
ranged interactions, continuous symmetries can not be broken spontaneously at any finite
temperature if d ≤ 2.
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