MÜNCHEN
https://moodle.Imu.de \rightarrow Kurse suchen: 'Rechenmethoden'

Sheet 00: Differentiation and Integration

Posted: So 01.09.23 Due: never
(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced

Example Problem 1: Differentiation of polynomials [1]
Points: (a)[0,5](E); (b)[0,5](E).
Compute the first and second derivatives of the following polynomials. [Check your results against those in square brackets, where $[a ; b, c]$ stands for $f^{\prime}(a)=b, f^{\prime \prime}(a)=c$.]
(a) $f(x)=3 x^{3}+2 x-1$
[2; 38, 36]
(b) $f(x)=x^{4}-2 x^{2}+2$
[2; 24, 44]

Example Problem 2: Derivatives involving powers, sine and cosine: product rule and chain rule [1]

Points: (a)[1](E); (b)[1](E)
Compute the first derivative of the following functions.
[Check your results against those in square brackets, where $[a, b]$ stands for $f^{\prime}(a)=b$.]
(a) $f(x)=x \sin x$
$\left[\frac{\pi}{4}, \frac{1}{\sqrt{2}}\left(1+\frac{\pi}{4}\right)\right]$
(b) $f(x)=\cos \left[\pi\left(x^{2}+x\right)\right]$
$\left[\frac{1}{2},-\pi \sqrt{2}\right]$
(c) $f(x)=\frac{1}{7-x^{2}}$
$\left[3, \frac{3}{2}\right]$
(d) $f(x)=\frac{x-1}{x+1}$
$\left[3, \frac{1}{8}\right]$

Example Problem 3: Differentiation of powers, exponentials, logarithms [2]
Points: [3](E).
Compute the first derivative of the following functions.
[Check your results against those in square brackets, where $[a, b]$ stands for $f^{\prime}(a)=b$.]
(a) $f(x)=-\frac{1}{\sqrt{2 x}}$
$\left[2, \frac{1}{8}\right]$
(b) $f(x)=\frac{x^{1 / 2}}{(x+1)^{1 / 2}}$
$\left[3, \frac{1}{16 \sqrt{3}}\right]$
(c) $f(x)=\mathrm{e}^{x}(2 x-3)$
$[1, \mathrm{e}]$
(d) $f(x)=3^{x}$
$\left[-1, \frac{\ln 3}{3}\right]$
(e) $f(x)=x \ln x$
$[1,1]$
(f) $f(x)=x \ln \left(9 x^{2}\right)$
$\left[\frac{1}{3}, 2\right]$

Example Problem 4: Elementary integrals [1]

Points: (a)[0,5](E); (b)[0,5](E)
Compute the following integrals. [Check your results: (a) $I(2)=\frac{15}{2}$; (b) $I(\ln 2)=\frac{7}{3}$.]
(a) $I(x)=\int_{1}^{x} \mathrm{~d} y\left(2 y^{3}-2 y+3\right)$,
(b) $I(x)=\int_{0}^{x} \mathrm{~d} y \mathrm{e}^{3 y}$.

Homework Problem 1: Differentiation of polynomials [1]

Points: (a)[0,5](E); (b)[0,5](E).
Compute the first and second derivatives of the following polynomials. [Check your results against those in square brackets, where $[a ; b, c]$ stands for $f^{\prime}(a)=b, f^{\prime \prime}(a)=c$.]
(a) $f(x)=4 x^{5}-x^{3}+2$
$\left[\frac{1}{2} ; \frac{1}{2}, 7\right]$
(b) $f(x)=x^{3}-2 x^{2}-x+9$

Homework Problem 2: Derivatives involving powers, sine and cosine: product rule and chain rule [2]
Points: (a)[1](E); (b)[1](E)
Compute the first derivative of the following functions.
[Check your results against those in square brackets, where $[a, b]$ stands for $f^{\prime}(a)=b$.]
(a) $f(x)=\left(x+\frac{1}{\pi}\right) \sin \left[\pi\left(x+\frac{1}{4}\right)\right]$
$[0, \sqrt{2}]$
(b) $f(x)=-x^{2} \cos (\pi x) \quad\left[\frac{1}{3},-\frac{1}{3}+\frac{\pi}{6 \sqrt{3}}\right]$
(c) $f(x)=\cos [\pi \sin (x)]$ $\left[\frac{\pi}{6},-\frac{\sqrt{3}}{2} \pi\right]$
(d) $f(x)=-\cos ^{4}\left(\frac{3}{\pi} x^{2}-x\right)$
(e) $f(x)=\frac{1}{x^{3}-2 x^{2}}$
$\left[3,-\frac{5}{27}\right]$
(f) $f(x)=\frac{x^{2}-2}{x^{2}+1}$

Homework Problem 3: Differentiation of powers, exponentials, logarithms [2]
Points: [2](E) (Solve any 4 subproblems; beyond that: 0.25 bonus per subproblem.)
Compute the first derivative of the following functions.
[Check your results against those in square brackets, where $[a, b]$ stands for $f^{\prime}(a)=b$.]
(a) $f(x)=\sqrt[3]{x^{2}}$
$\left[8, \frac{1}{3}\right]$
(b) $f(x)=\frac{x}{\left(x^{2}+1\right)^{1 / 2}}$
$\left[1, \frac{1}{\sqrt{8}}\right]$
(c) $f(x)=-\mathrm{e}^{\left(1-x^{2}\right)}$
$[1,2]$
(d) $f(x)=2^{x^{2}}$
(e) $f(x)=2 \frac{\sqrt{\ln x}}{x}$
$\left[\mathrm{e},-\frac{1}{\mathrm{e}^{2}}\right]$
(f) $f(x)=\ln \sqrt{x^{2}+1}$

Homework Problem 4: Elementary integrals [1]

Points: (a)[0,5](E); (b)[0,5](E)
Compute the following integrals. [Check your results: (a) $I(6)=\ln 2$; (b) $I(\ln 9)=\frac{4}{3}$.]
(a) $I(x)=\int_{0}^{x} \mathrm{~d} y \frac{1}{2 y+4}$,
(b) $I(x)=\int_{0}^{x} \mathrm{~d} y \sinh \left(\frac{1}{2} y\right)$.

