Back-of-the-Envelope Physics

Winter Term 2023/24

Sheet 5

- 1. Consider the quantum mechanics of a particle of mass m in the 1-dimensional potential $V(r) = \beta r$ for r > 0 and $V(r) = \infty$ for r < 0.
- a) Sketch the potential together with the shape of the ground-state wave function.
- b) Use dimensional analysis to find an expression for the energy E_1 of the ground state.
- c) Determine the dependence of the energy eigenvalues E_n on the quantum number n (for large n), using the approximation of the potential by an infinite square well of appropriate width.
 - d) Estimate the asymptotic behaviour of the wave function for large r.
 - 2. The Schrödinger equation for the wave function u(r) of problem 1 is

$$-\frac{\hbar^2}{2m}\frac{d^2u}{dr^2} + \beta r \, u = Eu \tag{1}$$

for r > 0, with boundary condition u(0) = 0. Obtain the exact solution for the eigenvalues and eigenfunctions. Compare with the approximate results from problem 1.

Hint: Write eq. (1) in terms of a dimensionless variable s through a suitable rescaling of $r = \lambda s$. Similarly, introduce dimensionless energy eigenvalues ε . In this way, eq. (1) can be reduced to the form

$$\frac{d^2u}{dz^2} = zu\,, (2)$$

which is solved by the Airy function

$$\mathcal{A}(z) = \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + tz\right) dt \tag{3}$$

- 3. The tunneling probability \mathcal{R} for the stellar fusion reaction $p+p \to d+e^++\nu_e$ can be written as $\mathcal{R} = \exp(-\sqrt{E_G/E})$, where E is the energy of the pp collision. Estimate the Gamow energy E_G for this process, by giving a parametric formula and a numerical evaluation.
- 4. Including the Boltzmann factor, the tunneling probability from problem 3 becomes $\mathcal{R}_B = \exp(-(\sqrt{E_G/E} + E/T))$. The factor $\mathcal{R}_B(E)$ has a peak at $E = \bar{E}$. Determine the position $\bar{E}(T)$ and the width $\Gamma(T)$ of this peak by expanding the exponent to second order around \bar{E} .