## Back-of-the-Envelope Physics <br> Winter Term 2023/24

## Sheet 3

1. Determine the dimensions $[\vec{E}],[\vec{B}],[\varphi],[\vec{A}],[c],[e]$ in the system of natural units (Gaussian system with $\hbar=c=1$ ). Express the dimensions in units of energy.
2. Simplify the expression

$$
\vec{A} \times(\vec{B} \times \vec{C})
$$

by first arguing that it must be a linear combination of $\vec{B}$ and $\vec{C}$. Next, obtain the coefficients of $\vec{B}$ and $\vec{C}$ from dimensional analysis, up to numerical factors. Finally, fix the numerical factors from suitable (and simple) special cases.

Use the resulting formula to evaluate

$$
\vec{\nabla} \times(\vec{\nabla} \times \vec{V})
$$

3. Show through explicit calculation that $(r \equiv|\vec{x}|)$

$$
\left(\frac{1}{c^{2}} \partial_{t}^{2}-\Delta\right) G(t, r)=4 \pi \delta(t) \delta(\vec{x}) \quad \text { for } \quad G(t, r)=\frac{\delta(t-r / c)}{r}
$$

Use that

$$
-\Delta \frac{1}{r}=4 \pi \delta(\vec{x})
$$

4. Compute $\Delta(1 / r)$ for $r \neq 0$. Use both cartesian and spherical coordinates for the Laplace operator $\Delta$.
5. The charge density $\varrho$ and the current density $\vec{j}$ of a moving point charge $e$ can be written as

$$
\varrho(t, \vec{x})=e \delta(\vec{x}-\vec{r}(t)), \quad \vec{j}(t, \vec{x})=e \vec{v}(t) \delta(\vec{x}-\vec{r}(t)),
$$

where $\vec{r}(t)$ is the trajectory of the charge and $\vec{v}(t)=d \vec{r}(t) / d t$ its velocity.
Show by explicit calculation that the continuity equation holds for this case.

