Back-of-the-Envelope Physics

Winter Term 2023/24

Sheet 1

1. Obtain the area A of an ellipse with semi-axes a and b, using symmetry and that the area of a circle with radius r is πr^{2}. No integration is allowed!
2. Two stars with mass m_{1} and m_{2}, respectively, move on circular orbits around their common center-of-mass under the influence of gravity. The distance between the stars is r. Calculate the orbital period T as a function of m_{1}, m_{2} and r, including all numerical factors.
3. A particle of mass m moves along the x-axis in a potential

$$
U(x)=b x^{4}
$$

Compute the oscillation period T exactly. Compare the result with the estimate obtained using dimensional analysis.
4. Design a simple mechanical device, made of springs and straight frictionless rails, which leads to an (approximate) x^{4} potential for the one-dimensional motion of a point particle.
5. A football is kicked from the ground with initial velocity v and angle θ with respect to the horizontal. Neglect friction and the finite size of the ball. Discuss the range R of the ball, using dimensional analysis and guessing the θ dependence. Check and compare with an exact calculation.

