

Inverse problems and machine learning in

medical physics

Robotics in radiation therapy

Dr. Chiara Gianoli 6/2/2024 chiara.gianoli@physik.uni-muenchen.de

The CyberKnife

- The CyberKnife is a radiation delivery system that features a linear accelerator (*linac*) directly mounted on a robot to deliver photons for radiation therapy, a fluoroscopic kV X-ray imaging for pre-treatment and intra-treatment imageguidance and an optical system for respiratory motion tracking
 - 3D conformal radiotherapy (3D-CRT), including intensity modulated radiation therapy (IMRT)
 - Stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) treatments

https://link.springer.com/article/10.1007/s43154-021-00072-3

The CyberKnife

- The beams are delivered from fixed points in space called nodes, arranged in spherical (intracranial applications) or ellipsoidal (extracranial applications) configurations
- The combination of nodes and pointing vectors (twelve for each node) provides a set of "elementary beams" to plan the treatment

The CyberKnife

Prior to the treatment, eight radiographic X-ray images in different breathing phases are compared to the DRRs of the treatment planning X-ray CT image to determine by triangulation the transformation to be applied to the 6-DoF robotic bed for patient positioning

- During the treatment, this transformation is adjusted in real-time by moving the end-effector of the 6-DoF robotic manipulator (*linac*) according to the moving target
- The motion tracking considers:
 - Fiducial-free tumor tracking based on the optical tracking system (for external localization at 20–40 Hz) and implanted radio-opaque markers near or inside the tumor based on the X-ray imaging system (for internal localization every 30s) thus making use of external-internal correlation models
 - The model is constructed in ~30s at the beginning of the treatment and enables motion prediction for delay compensation (~ms)

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

The CyberKnife

- First of all, we have to know where the robot is...
- Kinematics is the science of motion that treats motion without regard to the forces which cause it (i.e., position, velocity, acceleration...)
- The forward kinematics problem is about the knowledge of the position of the end-effector, given the kinematic chain of the mechanical system
 - The kinematic chain is an assembly of links (rigid bodies) connected by joints providing degrees of freedom (DoF) to the end-effector
 - the number of DoF of the end-effector is determined by the DoF of all the joints (i.e., 1-DoF for each revolute joint)

• The kinematic chain is described by the joint variables (i.e., the angles for the revolute joints)

- In order to unequivocally localize the position of the end-effector in function of the angles of the kinematic chain (joints and links), the Denavit–Hartenberg convention (D-H convention) is commonly adopted
 - The *n* links are numbered from 0 (the base of the kinematic chain) to *n*-1 (the end-effector)

- In order to unequivocally localize the position of the end-effector in function of the angles of the kinematic chain (joints and links), the Denavit–Hartenberg convention (D-H convention) is commonly adopted
 - The n-1 joints are numbered from 1 to n-1 so that the joint n connects the link n-1 (the base of the kinematic chain) to the link n (the end-effector)

- In order to unequivocally localize the position of the end-effector in function of the angles of the kinematic chain (joints and links), the Denavit–Hartenberg convention (D-H convention) is commonly adopted
 - A frame *n* is defined at the joint n

- Z_n is defined as the rotational axis of the revolute joint n
 - If Z_n and Z_{n+1} are skew lines, X_n is defined along the common perpendicular of Z_n and Z_{n+1} (the shortest distance between two skew lines is the distance between their intersection points with their common perpendicular), from Z_n to Z_{n+1}
 - The origin of the frame n is defined at the intersection point with Z_n
 - Y_n is defined according to the right-hand frame

- If Z_n and Z_{n+1} are parallel lines (i.e., planar robot), X_n is defined along the common normal of Z_n and Z_{n+1}, from Z_n to Z_{n+1}
- The origin of the frame n is set on the joint n
- Y_n is defined according to the right-hand frame

- If Z_n and Z_{n+1} are intersecting lines, X_n is defined by the vector product between Z_n and Z_{n+1} (i.e., according to the right-hand frame)
- The origin of the frame n is set on the intersection point
- Y_n is defined according to the right-hand frame

- I D-H parameter a_n (link length)
 - *a_n* is the absolute distance between Z_n and Z_{n+1}
- II D-H parameter b_n (joint offset)
 - **b**_n is the distance along Z_n between X_{n-1} and X_n
- III D-H parameter α_n (twist angle)
 - α_n is the angle between Z_n and Z_{n+1} across X_n (positive if counterclockwise)
- IV D-H parameter ϑ_n (joint angle)
 - $\boldsymbol{\vartheta}_n$ is the angle between X_{n-1} and X_n across Z_{n-1} (positive if counterclockwise)

Based on this convention, four Denavit–Hartenberg parameters (D-H parameters) are defined for each joint

 The forward kinematics describe the transformation of the frame n with respect to the frame n-1 as a composition of rotations and translations in the Denavit-Hartenberg matrix (D-H matrix)

 ${}^{n-1}_{n}T = R_X(\boldsymbol{\alpha}_{n-1})D_X(\boldsymbol{a}_{n-1})R_Z(\boldsymbol{\vartheta}_n)D_Z(\boldsymbol{b}_n)$

- Translation along Z_n equal to **b**_n
- Rotation across Z_n equal to $\boldsymbol{\vartheta}_n$
- Translation along X_{n-1} equal to *a_{n-1}*
- Rotation across X_{n-1} equal to α_{n-1}

$${}^{n-1}_{n}T = \begin{bmatrix} \cos(\vartheta_{n}) & -\sin(\vartheta_{n}) & 0 & \varkappa_{n-1} \\ \sin(\vartheta_{n})\cos(\varkappa_{n-1}) & \cos(\vartheta_{n})\cos(\varkappa_{n-1}) & -\sin(\varkappa_{n-1}) & -\sin(\varkappa_{n-1}) \\ \sin(\vartheta_{n})\sin(\varkappa_{n-1}) & \cos(\vartheta_{n})\sin(\varkappa_{n-1}) & \cos(\varkappa_{n-1}) & \cos(\varkappa_{n-1}) \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation matrix ${}^{n-1}_{n}R$ Translation vector ${}^{n-1}_{n}t$

The forward kinematics describe the transformation of the end-effector frame with respect to the base frame (i.e., frame 0) as a composition of D-H matrixes

$${}_{e-e}{}^{0}T = {}^{0}_{1}T \dots {}^{n-1}_{e-e}T = \prod {}^{n-1}_{n}T = \begin{bmatrix} e - {}^{0}_{e}R & e - {}^{0}_{e}t \\ 0 & 0 & 1 \end{bmatrix}$$

- The position of the end-effector in the base frame (i.e., frame 0) ⁰P is determined by the matrix-vector product of the composed D-H matrix with the position of the end-effector in the end-effector frame ^{e-e}P
 - The frame at the end-effector can be arbitrarily defined

$${}^{0}P = {}_{e-e}{}^{0}T^{e-e}P$$

Descriptor of the forward kinematics

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

The "forward" kinematics

Link	b _n	ð _n	a _n	α,
1	0	ϑ_1	a ₁	0
2	0	ϑ_2	a ₂	0
3	0	ϑ_3	a ₃	0
4	0	$artheta_4$	a_4	0

 ${}^{0}_{4}T = {}^{0}_{1}T \; {}^{1}_{2}T \; {}^{2}_{3}T \; {}^{3}_{4}T$

${}^0_4T = \left[$	$cos(\boldsymbol{\vartheta}_{1})$ $sin(\boldsymbol{\vartheta}_{1})$	$-sin(\boldsymbol{\vartheta}_{1})$ $cos(\boldsymbol{\vartheta}_{2})$	0 0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} \cos(\theta_2) \\ \sin(\theta_2) \end{bmatrix}$	-sin(9 2) cos(9 2)	0 0	$\begin{bmatrix} a_1 \\ 0 \end{bmatrix}$	cos(9 3) sin(19 2)	$-sin(\boldsymbol{\vartheta}_{3})$ $cos(\boldsymbol{\vartheta}_{2})$	0 0	$\begin{bmatrix} a_2 \\ 0 \end{bmatrix}$	cos(9 4) sin(9 4)	$-sin(\theta_4)$ $cos(\theta_4)$	0 0	$\begin{bmatrix} a_3 \\ 0 \end{bmatrix}$
		0 0	1 0		0 0	1 0	$\begin{bmatrix} 0\\1 \end{bmatrix}$		0 0	1 0	$\begin{bmatrix} 0\\1 \end{bmatrix}$		0 0	1 0	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$

The "inverse" kinematics

- Finally, we have to know where the robot goes...
- The inverse kinematics problem is about the knowledge of the kinematic chain of the mechanical system, given the desired position of the end-effector (i.e., the task)
- The solution of the inverse kinematics problem is defined within the workspace of the mechanical system
 - If the task is outside the workspace, the solution does not exist
 - If the solution exists, this can be single or multiple (infinite) depending on the DoF of the mechanical system

The "inverse" kinematics

- The number of unknowns is defined by the DoF of the joints of the mechanical system
- The forward kinematics given by $e_{-e}^{0}T$ provide 16 equations but 4 of them are trivial. Among the remaining 12 equations, 3 equations are relevant to the position-vector $e_{-e}^{0}t$ and 9 equations are relevant the rotation-matrix $e_{-e}^{0}R$. In the rotation-matrix only 3 equations are independent. The number of equations is therefore 6.
- The kinematic equations are nonlinear and transcendental, their solution is not always easy (or even possible) in a closedform
 - For a 6-DoF robot, there are 6 equations and 6 unknowns. In this case, the analytical solution of the inverse kinematic problem is feasible

The "inverse" kinematics

- Numerical methods (i.e., iterative optimization algorithm) based on approximation and derivatives of the forwardkinematics function for finding the local minimum
- If n the number of joint variables, the forward-kinematics function map a point in the joint space to an end-effector position in the workspace

 $p(x): \mathbb{R}^n \to \mathbb{R}^3$

- Given the initial position of the system $p_0 = p(x_0)$, the task is defined as $p_1 = p(x_0 + \Delta x)$
- Given the Jacobian of the forward-kinematics function $J_p(x_0)$, whose size is 6 x n, the Taylor series expansion of the forward-kinematics function, valid for small Δx , is calculated as:

$$p(x_1) \approx p(x_0) + J_p(x_0) \Delta x$$

By calculating the (pseudo) inverse $J_p^{inv}(x_0)$, the updating step is defined as:

 $\Delta x \approx J_p^{inv}(x_0)\Delta p(x_0)$ with $\Delta p = p(x_0 + \Delta x) - p(x_0)$, and thus $\Delta x_{k+1} \approx J_p^{inv}(x_k)\Delta p_k$

Robotics and artificial intelligence

- The human body is a mechanical system made of joints and links that can implement a task
- The human senses define the control system that can provide information about the task
- The human brain is the intelligence system that can decide the task based on the sensor information

artificial intelligence-driven robots

Robotic surgery

Robotics and artificial intelligence

- In radiation oncology, the task is executed based on the patient model in the treatment planning scenario
- The task is adapted based on imaging and sensor systems for monitoring the treatment delivery scenario, thus adapting the *real* patient to the patient model (i.e., patient positioning) or vice versa, to adapt the patient model to the *real* patient (i.e., treatment adaptation and tumor tracking)
 - Correction models are defined (i.e., anatomical correction models, external-internal correlation models)
 - Model-free adaptive tasks based on AI

