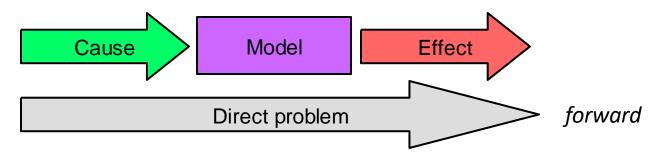


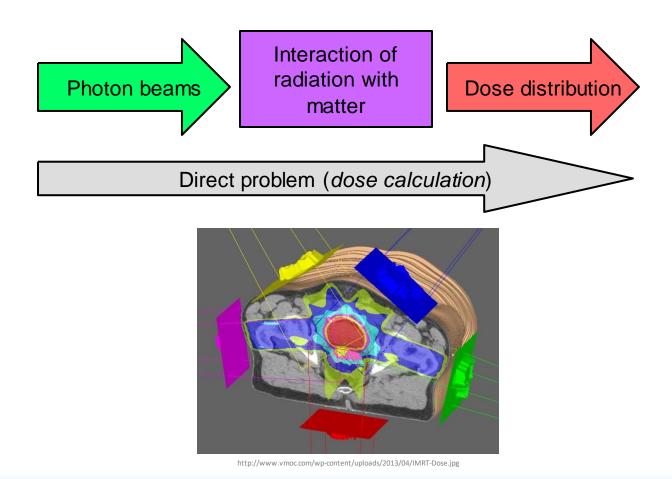
Inverse problems and machine learning in medical physics

Introduction to the course


Dr. Chiara Gianoli 17/10/2023 chiara.gianoli@physik.uni-muenchen.de

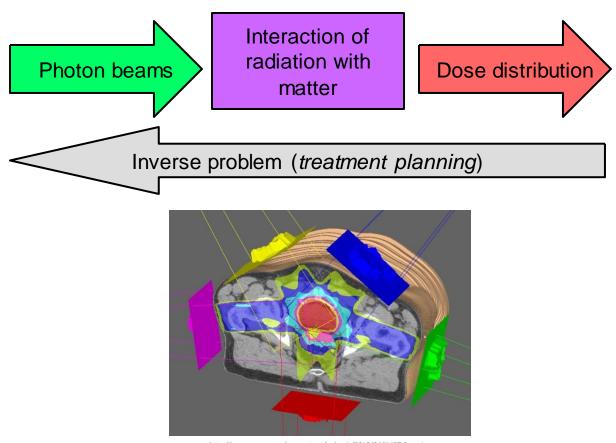
Direct and inverse problems in medical physics

- Medical physics is a multidisciplinary field that includes computational science
- The computing power of machines is exploited to understand and solve complex problems of medical physics
- The direct problem is based on a mathematical model that links cause-effect of a certain phenomenon
 - The solution of the direct problem enables to explore the parameter space of the consequences (i.e., understand the problem by observing the consequences of the phenomenon)


• The solution of the inverse problem requires the mathematical model of the direct problem that links cause-effect of a certain phenomenon to explore the parameter space of the causes (i.e., solve the problem by finding the causes of the phenomenon, when the causes are not directly observable)

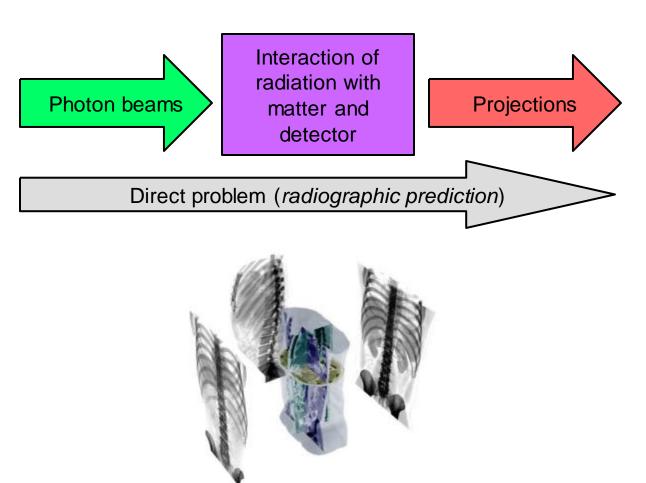
Direct and inverse problems in medical physics

• Dose calculation is a direct problem in medical physics, typically based on analytical or Monte Carlo models

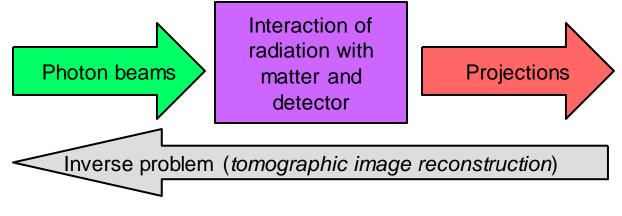


Direct and inverse problems in medical physics

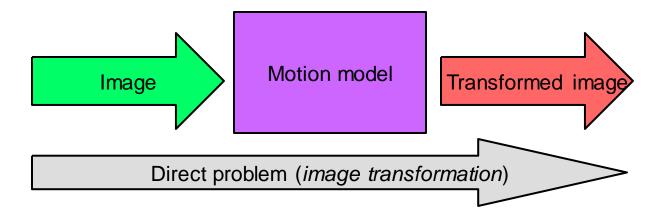
• Treatment planning is the inverse problem based on the analytical or Monte Carlo models of the direct problem (i.e., dose calculation)

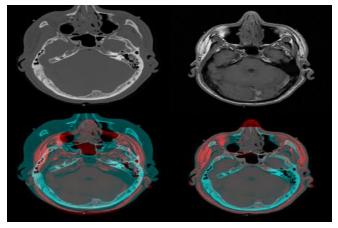


http://www.vmoc.com/wp-content/uploads/2013/04/IMRT-Dose.jpg

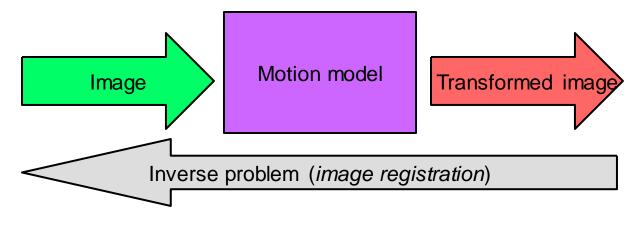

• Radiography prediction or calculation is a direct problem in medical physics, typically based on algebraic models

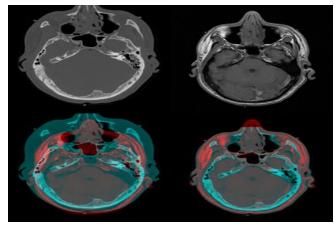
• Tomographic image reconstruction is the inverse problem based on the algebraic models of the direct problem (i.e., radiography prediction)





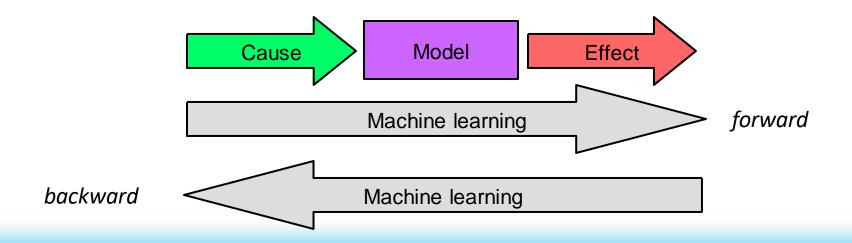
• Image transformation or deformation is a direct problem in medical physics, typically based on motion models




https://paperswithcode.com/task/image-registration

• Image registration is the inverse problem based on the motion models of the direct problem (i.e., image transformation)

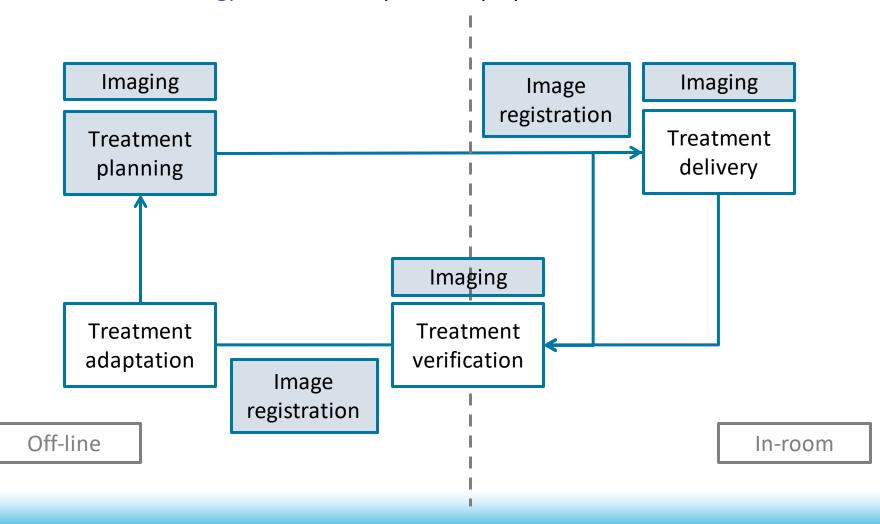
https://paperswithcode.com/task/image-registration



LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Inverse problems and machine learning in medical physics

- Machine learning is based on numerical optimization (of the parameters of the functions that describe the neural network...)
- The numerical optimization aims at finding the model that links cause-effect or effect-cause
 - to solve the direct problem when the causes are the inputs and the consequences are the targets/outputs
 - to solve the inverse problem when the consequences are the inputs and the causes are the targets/outputs with no explicit knowledge of the model of the direct problem



Topics of the lectures

Lectures cover topics in radiation oncology where inverse problems play fundamental role

Lectures

- Lectures are given in presence (Kleiner Physiksaal)
- Slides are uploaded on the course website (generally one day in advance)
- The lecture can be followed on line at this ZOOM link:

https://lmu-munich.zoom-x.de/j/66153337745?pwd=enBzUmptN1FPd0p5VHBZYUdRQzl3dz09

A ZOOM registration of the lectures is available upon request (Chiara. Gianoli@physik.uni-muenchen.de)

Tutorials

- Tutorials are given in presence (Kleiner Physiksaal) by Ines Butz and uploaded on the course website
 - Step by step and "real time" coding in Python is displayed (participation with personal laptop is suggested)

Exercises

- The exercises are not mandatory
- The exercise are assigned to bridge theory and practice of the course (and to get a bonus in the exam...)
- The aim of the tutorials is to support the implementation of the exercises
- The exercises consist in the implementation of a numerical optimization algorithm and a neural network for tomographic image reconstruction
 - The "preparatory" algorithms can be similar to those presented in the tutorials
 - The "core" algorithm is not the one presented in the tutorials
- The code can be implemented in Python, Octave (Matlab) or c++ (with libraries, and previous experience)

Exam

- The written exam is made by open questions (1 or 2) and multiple choice questions (9 or 10) with different weights
 - Open questions can consider pseudo-codes but no coding
 - Multiple choice question can consider calculations (a calculator is allowed but not necessarily needed...)
- The date of the exam is democratically decided via on line poll

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Outline of the lectures

17.10.2023	Introduction to the course	Lecture
24.10.2023	Analytical image reconstruction	Lecture
31.10.2023	Numerical image reconstruction	Lecture
7.11.2023	Introduction and imaging fundamentals in Python	Tutorial
14.11.2023	Transmission and emission imaging in radiation oncology	Lecture
21.11.2023	Tomographic image reconstruction algorithm in Python (remote tutorial?)	Tutorial
28.11.2023	Ion imaging in ion beam therapy	Lecture
5.12.2023	Introduction to machine learning - Machine learning in tomographic image reconstruction	Lecture
12.12.2023	Introduction and machine learning fundamentals in Python	Tutorial
19.12.2023	Machine learning applications in Python	Tutorial
9.1.2024	Treatment planning and adaptive radiation therapy	Lecture
16.1.2024	Machine learning in adaptive radiation therapy	Lecture
23.1.2024	Deformable image registration	Lecture
30.1.2024	Image registration in radiation oncology	Lecture
6.2.2024	Robotics in radiation oncology	Lecture
to be decided	Exam and handing in of the exercise	