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Tomographic image reconstruction represents the building block of medical imaging
Tomographic image reconstruction has been classified as analytical reconstruction or numerical reconstruction

Very recently, data-driven, deep-learning-based tomographic image reconstruction has been introduced (i.e., deep
tomographic reconstruction)

* Direct reconstruction methods

 Unrolled iterative reconstruction methods

The huge benefit of machine learning in reconstruction is the use of the ground truth (i.e., supervised learning), as
obtained from high quality simulations or high quality measurements
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* Tomographic image acquisition can be modelled as a Radon transform, or sinogram, of the variable describing the physical
properties of the object of interest

sinogram

* The Radon Transform converts an image from spatial domain to
sinogram domain, by integrating the variables along the integration
lines, as a function of the projection angles

* The analytical image reconstruction is based on the Fourier slice
theorem that puts in correspondence the Radon Transform with the
Fourier Transform of the image (i.e., the filtered back-projection)

Radon transform Fourier transform
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* The inverse problem of tomographic image reconstruction can be solved by means of numerical (iterative) algorithms
* Numerical algorithms can be considered as an iterative solver of a system of linear equations

* | equations, one for each projection p = xcosV + ysind

i

* Junknowns, one for each pixel

ay1f1 + asfo + 0 aqyf; = g1

j‘> gi= ) aijf
apfi+apf,+ - agf; =g J

* The coefficients a;; (i.e., the elements of the system matrix) express the intersection area/volume of the pixel/voxel j with
the integration line of the projection i
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 The iterative reconstruction paradigm is to find the image that minimizes the “discrepancy” between the forward-
projection of the image (i.e., the model of the sinogram) and the acquired sinogram

initialization
image
—>| forward-projection model g i @

v

objective function F(g|g) (——/ sinogram g /gi = gi + noise

o v

updated image f f = argmins F(Af|g)

convergence? reconstructed
: image
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* The machine learning paradigm in tomographic image reconstruction is to find the parameters of the mapping function
that infers the ground truth based on supervised prediction

/ sinogram Girain / ground truth t

I > loss function L(0) |€

A

mapping function 0 = argming L(DNN(gtrqin|0)[t)
/ sinogram Giest /

mapping function

/ inferred image / t = DNN(Gest|6)

* Different from analytical and numerical approaches, deep learning deploys a method for reconstruction (i.e., an
estimator), not a reconstruction (i.e., an estimate)
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* The back-projection is a linear mapping (i.e., matrix-vector multiplication) that can be described by a fully connected layer
(i.e., linear layer) of an artificial neural network (ANN)

/ >nogram 9 /
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* One of the first ML attempt to deep tomographic reconstruction was based on the “pre-calculation” of the filters for the
filtered back-projection, instead of being analytically calculated each time...

* The learnable weights (learnt based on a point
source) are applied along the projection lines of the

sinogram
S
 The back-projection is implemented for each o—0. . S
projection lines of the sinogram as fully connected o—0.
layer with non-learnable weights (rotational and S
shift-invariant approximation) C - %
o

Floyd, C. E. (1991). An artificial neural network for SPECT image H
reconstruction. IEEE transactions on medical imaging, 10(3), 485-487.

* In practice, this is suitable only for two-dimensional images
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* Define the image of an ideal point source (i.e., target data of the network)

* Simulate the sinogram of the ideal point source, then add noise and blur along each projection line (i.e., input data of the
network)

* Implement a first fully connected network, connecting the nodes of the input layer (i.e., the projection line) to all the
nodes of the hidden layer (i.e., the filtered projection line)

* The forward-pass function is a weighed average of the inputs with unknown weights (i.e., no bias, no activation
function)

* Implement a second fully connected network, connecting the nodes of the hidden layer (i.e., the filtered projection line) to
all the nodes of the output layer (i.e., the image)

* The forward-pass function is a weighed average of the inputs with known weights from the system matrix

* Train the network based on input and target data (implement the backward-pass based on the gradient descend
algorithms)
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* The purpose of domain transform is to map the sinogram (i.e., the projections) to the image

 The measured sinogram encodes an intermediate representation of the object of interest in the projection domain
(i.e., the Radon transform), similar to an encoding function

* The measured sinogram is subsequently reconstructed into an image by an inversion of the encoding function, similar
to a decoding function

Radon transform of the object of interest

“reconstructed”
object of interest

object of
interest

Decoder (image
reconstruction)
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* In direct reconstruction methods, the domain transformation can be learnt from the network or explicitly given as input to
the network

* Direct reconstruction methods can entail the encoding of the data (i.e., the Radon transform or the image) into a
lower dimensional space (i.e., compressed sensing) and the decoding of the encoded data, typically by means of

convolutional layers

 The compressed sensing hypothesis is that a signal can be represented by and perfectly recovered from few non-
zero coefficients in a suitable basis (i.e., dictionary)

* Wavelet and Shearlet are common basis functions for image encoding and decoding
(https://www.math.uh.edu/~dlabate/SHBookIntro.pdf)

* Transformation into a lower dimensional space can be based on manifolds (i.e., manifold-based compressed sensing)

 The manifold hypothesis is that high dimensional data (i.e., a continuous images) lie on low-dimensional
manifolds (i.e., a point) in a high-dimensional space (i.e., an infinite dimensional vectoral space)

e Zero-dimensional manifolds are points, one-dimensional manifolds are lines, two-dimensional manifolds are
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e The AUtomated TransfOrm by Manifold Approximation (AUTOMAP) is a deep neural network with feed-forward
architecture, composed of multiple fully-connected layers followed by a sparse convolutional auto-encoder (i.e., encoder-
decoder where the input and the output domains are the same)

* The network simultaneously learns an optimal convolutional domain (i.e., manifold space) and a sparse representations
(i.e., compressed sensing) through a joint optimization (i.e., manifold encoding—decoding process)

* Different from compressed sensing, the
convolutional layers do not make hypothesis on
the sparsifying transform (e.g., wavelet,
shearlet...)

* AUTOMAP is originally demonstrated for MRI
but it is generally applicable to different image
reconstruction problems

"FC2 FC3 C1 c2 mage
P Fanxn mxnNxn Myxnxn  Nxn

FC1

Zhu, B., Liu, J. Z., Cauley, S. F., Rosen, B. R., & Rosen, M. S. (2018). Image 2"2
reconstruction by domain-transform manifold learning. Nature, 555(7697), 487-492.
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* The DirectPET is a large-scale direct neural network that performs image reconstruction by introducing a Radon inversion

layer

* An encoding segment compressing the sinogram data into a lower dimensional space

A domain transformation segment
(i.,e., Radon inversion) using
sinogram data masking along with
fully connected layers

* A refinement and scaling segment
enhancing and up-sampling the
reconstructed image

Whiteley, W., Luk, W. K., & Gregor, J. (2020). DirectPET:
full-size neural network PET reconstruction from sinogram
data. Journal of Medical Imaging, 7(3), 032503.
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* The Deep PET is a convolutional encoder—decoder network without fully connected layers

» Shift-invariant mapping of the convolution to encode sinogram data into feature maps (convolutional encoding)

* Spatial down-sampling to @ Aot
. . - Noisy realizanon of tota),
introduce  space  variance

rue, scalfer, random,
(needed for domain transform)

and aftenuabon data
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Haggstrom, 1., Schmidtlein, C. R., Campanella, G., & Fuchs,
T.J. (2019). DeepPET: A deep encoder—decoder network
for directly solving the PET image reconstruction inverse

problem. Medical image analysis, 54, 253-262. 269289
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DeepPET output
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(iCT-Net)

* The intelligent CT network (iCT-Net) is a deep neural network based on multi-channel convolutional layers intended for
image reconstruction of truncated data (i.e., the limited and sparse angle problem, the exterior problem and the interior

problem)
=
=

* The design of the iCT-Net is inspired by the filtered back-projection pipeline which consists of three major cascaded
steps

interior
problem

exterior
problem

Pre-processing of projection
data (i.e., noise and beam
hardening correction)

Back-projection for domain
transform

\ 4

Projection data filtering >

Li, Y., Li, K., Zhang, C., Montoya, J., & Chen, G. H. (2019). Learning to reconstruct computed tomography images directly from
sinogram data under a variety of data acquisition conditions. |EEE transactions on medical imaging, 38(10), 2469-2481.
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(iCT-Net)

* Five convolutional layers (L1-L5 in figure) to suppress noise and convert a sparse-view sinogram into a dense-view
sinogram (i.e., manifold learning or pre-processing step)

* Four convolutional layers (L6-L9 in figure) to extract features (i.e., filtering)

e A fully connected layer (L10 in figure) to perform the domain transform from the extracted feature space to image space
(i.e., back-projection step)

) f
i) W
T A
1 H tl i 1
 Two convolutional layers (L11-L12 in y.
. ‘e s )
figure) to learn a combination of the s
. . . sl =igz§::;;m
image from each view (i.e, i
T R e /
. . v._;,u,o.,u,ggﬁ BT
summation step but with learnable . .. Output
. . B A A CT image
summation weights)
: W S Linear Tanh
* The rotational symmetry of the sy - s
back-projection is expl iCitly ¢ Frozen === Concatenation ﬁ Devectorization
implemented to reduce the
dimensionality Of the network Li, Y:, Li, K., Zhang, C., Montoya, J., & Chen, G. H (.2019). Lfe?rning to reconstruct computeq tornogr'aphy images directly from
sinogram data under a variety of data acquisition conditions. /EEE transactions on medical imaging, 38(10), 2469-2481.
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* In the hierarchical deep learning, the image reconstruction is fully learnt by interpreting the domain transform as a
continuum of intermediate representations between the input and output data

e A partial line integral is proposed as an intermediate representation between line integral and voxel according to a
hierarchical framework

* The reconstructed image is made by voxels, which are essentially line integrals over the “length” of the voxel

: :
3
Pi-1\Pi pwl.[ | ,fj-l fj.1 f].l
w 0 - b o
k74
4
» X
4
336
q%1\9%\q%
Line integrals Partial line integrals Image voxels
p(r.0) Ga(r,6,t) f(r,t)

Fu, L., & De Man, B. (2019, May). A hierarchical approach to deep learning and its application to tomographic reconstruction. In 15th International
Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Vol. 11072, p. 1107202). SPIE.
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lerarcnical deep iearning

 The estimation of the partial line integrals only requires the line integrals that are at nearby angular positions and at
nearby radial positions

« Similarly, the estimation of the voxel values requires as inputs only the partial line integrals that are at nearby radial and
depth positions

* Sparse connections layers

DL
;
\ m O
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Conv Conv
N N O G e layers

sinogram Recon image

Fu, L., & De Man, B. (2019, May). A hierarchical approach to deep learning and its application to tomographic reconstruction. In 15th International
Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Vol. 11072, p. 1107202). SPIE.
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With the Deep Back-Projection (DBP) the geometrical relationship between the projection domain and the image domain
is encoded in single-view back-projections that are stacked and then fed as input into the convolutional neural network

Typically, image reconstruction needs non-linear and shift-variant mapping, as introduced by fully connected layers,
down-sampling (encoding) and then up-sampling (decoding)

In this case, the spatial invariance of the purely convolutional neural network is retained

15 layers

Conv + RelLU

sinogram

Conv + BN + RelLU
Conv + BN + RelLU

reconstruction
single-view back

projections 3x3x16x64 IxInBdxE4 3x3nbdx

Ye, D. H., Buzzard, G. T., Ruby, M., & Bouman, C. A. (2018, November). Deep back projection for sparse-view CT reconstruction.
In 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP) (pp. 1-5). IEEE.




LUDWIG-
MAXIMILIANS-|
UNIVERSITAT
MUNCHEN

Interpretability and generalizability in medical applications play fundamental roles but deep neural networks are usually
difficult to interpret because of the huge number of parameters

e Algorithm unrolling or unfolding is proposed to improve the interpretability and the generalizability (i.e., overfitting)
of the deep neural network

* Explicitly connected to the iterative algorithms used in imaging (and signal processing)
* Explicitly based on domain knowledge as in imaging (and signal processing)

* |If the normal operator of the forward-projection model is a convolution (i.e., denoising and deblurring in the back-
projection model), convolutional neural networks take part of unrolled iterative reconstruction methods

Q

aiq aqj

.

2]

-~
—

L5 ajrl

* Denoising and deblurring can be described by convolutional layers
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* Each iteration of the algorithm is represented as one layer of the network
* Concatenating these layers forms a deep neural network

* The number of layers in a deep network is typically much smaller than the number of iterations required in an iterative
algorithm

* The network can be trained through all layers (i.e., end-to-end training) or layer per layer (i.e., sequential training)
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“Unfolded” iterative reconstruction
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* Unrolled iterative reconstruction methods are typically image domain networks intended to reduce the image noise due to
low count statistics PET sinograms based on prior information from high quality imaging

* The residual network, as a modified fully convolutional network (U-net), is trained using patient-specific prior
information (i.e., MRI image) and the measured data (i.e., PET sinogram) so that no prior training pairs are needed

* The training of the network is embedded in the tomographic image reconstruction algorithm (i.e., the training of the
network is iterated based on the iteratively reconstructed image...)

16 16 16 16

MRI | high quality PET
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image prior. IEEE transactions on medical imaging, 38(7), 1655-1665.
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Residual Learning Unit

MRI iterative PET unrolled PET

Mehranian, A., & Reader, A. J. (2020). Model-based deep learning PET image reconstruction using forward—backward
splitting expectation—maximization. IEEE transactions on radiation and plasma medical sciences, 5(1), 54-64.
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* The state-of-the-art in deep learning for the solution of inverse problems is the Learned PrimalDual architecture (i.e.,
physics-informed design), which delegates to the network also the image update

 The Learned PrimalDual architecture explicitly contains the forward- and back-projections models, which are applied to
the input data multiple times, as an unrolled tomographic image reconstruction algorithm

X-ray CT image
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o
=
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forward-projection

back-projection
back-projection

Adler, J., & Oktem, O. (2018). Learned primal-dual reconstruction.
IEEE transactions on medical imaging, 37(6), 1322-1332.
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* Analytical image reconstruction is based on the Fourier Slice Theorem that mathematically defines the
correspondence between the sinogram and the image

* Numerical image reconstruction is based on the forward-projection model that defines the correspondence
between the measurements and the unknowns, so that the iterative algorithm matches the forward-projection
model with the measurements

* Deep image reconstruction is instead based on the learning of the ground truth image

* The network can include the domain conversion in different ways

* By means of fully connected layers, thus informing the network about the space variance of the
correspondence between image and sinogram (i.e., learnt from the network)

* By means of encoding and decoding branches, thus introducing a certain space variance to the network
(i.e., learnt from the network)

* Explicitly given as input to the network in form of back-projection tensor
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