
Topological Defects

Problem Sheet 10 8 January 2024

1. Homotopy Theory

In the literature arguments for the existence of topological defects are often given
by the use of homotopy theory. This problem summarizes the most important terms
of homotopy theory that might be useful in your career as a physicist.

Let us define the vacuum manifold of a scalar field theory more mathematically. Let
ϕ0 be one minimum of the potential and G be the symmetry group of the theory,
then we call

Oϕ0 = {ϕ = gϕ0 : g ∈ G}

the orbit of ϕ0. In other words, the orbit is the set of all ϕ that are connected
by a transformation in G. (Comment : For convenience, we write g but we mean
the representation T (g).) The vacuum manifold is defined by all field values that
minimize the potential, thus

M =
⋃

ϕ0 minimizes V

Oϕ0 .

1. As an example let us consider a complex scalar field theory with U(1) symme-
try. Lets take the potential V1(ϕ) = λ(|ϕ|2 − v2)2. Give an example of an orbit
and write down the vacuum manifold of this theory.

2. If we replace the potential by V2(ϕ) = λ(|ϕ|2 − v1)
2(|ϕ|2 − v2)

2 with v1 ̸= v2.
How many non-equal orbits are there ? What is the vacuum manifold ?

The gauge group G can have elements that have no effect on the elements of the
orbit. We collect these elements in the so-called stabilizer subgroup

Hϕ0 = {h ∈ G : ϕ0 = hϕ0}.

Furthermore, let us define the (left) coset by

gHϕ0 = {gh : h ∈ Hϕ0}

and the coset space by

G/Hϕ0 = {gHϕ0 : g ∈ G}.

We can observe that there is a one-to-one correspondence between G/Hϕ0 and Oϕ0 ,
i.e. each coset gHϕ0 can be mapped to one point on the orbit ϕ0. We can combine
these coset spaces into one coset space by

G/H =
⊔

inequivalent orbits

G/Hϕ0 ,

where
⊔

denotes the disjoint union. Then there is a one-to-one correspondence
between the vacuum manifold M and G/H.



3. What are the coset spaces G/H of the theories given above with the potentials
V1(ϕ) and V2(ϕ) ? Why the disjoint union is necessary ?

4. Now consider an SU(2) symmetric theory with the scalar field transforming
under the adjoint representation. The potential is V (ϕ) = λ(Tr(ϕ2) − v2)2.
What is the coset space ? How do the coset space and the vacuum manifold
look like ?

Now that we defined the vacuum manifold mathematically, we can continue with
homotopy theory. Two mappings f : X → Y and g : X → Y are called homotopic,
if they can be continuously deformed into each other, i.e. there exists a family of
continuous mappings ht with t ∈ [0, 1], such that h0 = f and h1 = g. The set of all
mappings that are homotopic to each other is called homotopy class.

5. Write down three non-homotopic mappings from R2 \ (0, 0) to S1. How many
non-homotopic mappings are there ?

Let us now consider the boundary of the n-dimensional real space which can be
identified by the n-sphere Sn. The group of all homotopy classes that consist of
mappings from Sn to a group G is called the homotopy group πn(G).

6. What are the homotopy groups π0(Z2) and π1(S1) ?

7. What is the homotopy group π1(S2) ?

We want to give you two important rules without proving them. First of all, you can
use πn(G1 × G2) = πn(G1) × πn(G1). And secondly, for a compact, connected, and
simply connected group G (always the case for SU(N)), we can write π2(G/H) =
π1(H).

8. What is the homotopy group π1(T2), where T2 describes a torrus ?

9. Consider the case with an SU(2) adjoint scalar field with the potential V (ϕ) =
λ(Tr(ϕ2)− v2)2. What is the homotopy group π2(G/H) ?

But why all of this is important for topological defects ? The answer is that a
theory allows a domain wall, vortex, or magnetic monopole solution if the homotopy
group π0(G/H), π1(G/H), or π2(G/H) are non-trivial, respectively. In the previous
example with the adjoint scalar field, you saw that π2(G/H) is non-trivial, and thus
a magnetic monopole solution is allowed in this theory, which we already know from
the previous problem sheets.

10. Assuming there was a grand unified theory with gauge group SU(5) that com-
prises the whole standard model, show that magnetic monopoles are allowed
when the SU(5) symmetry gets broken down to the standard model symmetry
group.



2. Non-stable Domain Walls

In this exercise, we will analyze the domain wall solution in a (1 + 1)-dimensional
complex scalar field theory with the Lagrangian

L = ∂µϕ
∗∂µϕ− λ(|ϕ|2 − v2)2 (1)

1. Derive a domain wall solution that separates a region with vacuum expectation
value ⟨ϕ⟩ = +v from a region with ⟨ϕ⟩ = −v.

2. Take perturbations δϕ around the domain wall solution and show that they
satisfy the equation

∂µ∂
µδϕ+ 2λv2

(
tanh2(

√
λvx)(δϕ+ δϕ∗) +

(
tanh2(

√
λvx)− 1

)
δϕ

)
= 0 (2)

3. Take Re δϕ = 0 and Im δϕ = γ(x)e−iωt and show that there are solutions with
ω being imaginary. What does this mean ?

4. Use the arguments from homotopy theory to explain why this is the case. Do
you know what happens in the time evolution of such a domain wall ?

5. If we replace the potential by

V (ϕ) = λ(|ϕ|2 − v2)2|ϕ|2, (3)

stable domain walls exist. Explain why.


