Topological Defects

Problem Sheet 9

18 December 2023

1. The BPS Magnetic Monopole

With the knowledge of the previous problem sheet, we can write down the 't Hooft-Polyakov magnetic monopole solution. It can be written as

$$W_i^a = \varepsilon_{aij} \frac{r^j}{r^2} \frac{1}{g} (1 - K(r))$$

$$W_t^a = 0$$

$$\phi^a = \frac{r^a}{r^2} \frac{1}{g} H(r)$$
(1)

- 1. *(optional)* Find an expression for the energy density in terms of H(r) and K(r). Which limits K(r) and H(r) have to satisfy at $r \to 0$ and $r \to \infty$ in order to have a finite energy solution?
- 2. (optional) Show that the field equations for K(r) and H(r) are

$$H''(r) = \frac{2}{r^2} H(r) K(r)^2 + \lambda v^2 H(r) \left(\frac{H(r)^2}{m_v^2 r^2} - 1\right)$$
(2)

$$K''(r) = \frac{1}{r^2} \left(K(r)^3 - K(r) + H(r)^2 K(r) \right)$$
(3)

3. Show that in the BPS limit $\lambda \to 0$, the solution is

$$K(r) = \frac{m_v r}{\sinh(m_v r)} \tag{4}$$

$$H(r) = \frac{m_v r}{\tanh(m_v r)} - 1 \tag{5}$$

4. Show that the static energy of a 't Hooft-Polyakov monopole can be written as

$$E = \frac{4\pi v}{g} + \int d^3x \left[\frac{1}{2} \left(B_i^a - (D_i \phi)^a \right)^2 + V(\phi) \right].$$
 (6)

5. Explain why the 't Hooft-Polyakov magnetic monopole solution in the BPS limit satisfies the equation

$$B_i^a = (D_i \phi)^a, \tag{7}$$

and minimizes the energy. What is the mass of the BPS magnetic monopole?

2. Electromagnetic Field Strength Tensor

To obtain the electromagnetic field strength tensor, one could make the naive guess to project out the unbroken component or the gauge field, i.e. $A_{\mu} = \hat{\phi}^a W^a_{\mu}$ and use the usual expression $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$.

- 1. Show that this field strength tensor is not SU(2) gauge invariant.
- 2. We will modify the field strength tensor by adding another term :

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - \frac{1}{g}\varepsilon_{abc}\hat{\phi}^{a}(\partial_{\mu}\hat{\phi}^{b})(\partial_{\nu}\hat{\phi}^{c}).$$
(8)

Show that this is equivalent to

$$F_{\mu\nu} = \hat{\phi}^a G^a_{\mu\nu} - \frac{1}{g} \varepsilon_{abc} \hat{\phi}^a (D_\mu \hat{\phi})^b (D_\nu \hat{\phi})^c.$$
(9)

where $G^a_{\mu\nu}$ is the SU(2) field strength tensor.

- 3. Show that (9) is gauge invariant.
- 4. Show that for $\hat{\phi}^a = \delta^{a3}$, it reduces to the usual electromagnetic field strength $F_{\mu\nu} = \partial_{\mu}W^3_{\nu} \partial_{\nu}W^3_{\mu}$.

3. Moduli Space Metric of a Single Magnetic Monopole

The goal of this problem is to determine the moduli space metric of a single magnetic monopole. For that recall that the moduli space is described by the collective coordinates.

We have an SU(2) gauge theory with an adjoint scalar field ϕ^a . For the magnetic monopole, we have to be a bit more careful than for the kink or vortex since a translation of the monopole can raise to an additional gauge transformation.

1. Explain why the scalar and vector fields change by

$$\delta\phi^a = \varepsilon_{abc}\alpha_b(x)\phi^c(x) + a_i(t)\partial_i\phi^a(x) \tag{10}$$

$$\delta W_i^a = \varepsilon_{abc} \alpha_b(x) W_i^c(x) - \frac{1}{g} \partial_i \alpha_a(x) + a_j(t) \partial_j W_i^a(x)$$
(11)

if we apply the transformation $x^i \to x^i - a^i(t)$ with $a^i(t)$ being very small. Notice that we want to keep $W_t^a = 0$.

2. For $\alpha_a = ga_i(t)W_i^a(x)$ the Gauss constraint remains satisfied. Show that the kinetic term takes the form

$$T = \frac{1}{2} \dot{a}_i \dot{a}_j \int d^3 x \left(G^a_{ik} G^a_{jk} + (D_i \phi)^a (D_j \phi)^a \right).$$
(12)

3. Show that in the BPS limit, the kinetic energy can be rewritten to

$$T = \frac{1}{2}M\dot{a}_k\dot{a}_k,\tag{13}$$

where M is the monopole mass.

In addition to the translation collective coordinates, we can have one that arises from a gauge transformation with

$$U = \exp\left(i\frac{\phi}{v}\chi(t)\right). \tag{14}$$

 $\chi(t)$ can change with time and describes this fourth collective coordinates.

- 4. How do ϕ^a and W_i^a change with this transformation?
- 5. Show that the kinetic energy corresponding to the collective coordinate χ is given by

$$T = \frac{1}{2} \frac{1}{g^2 v^2} M \dot{\chi}^2 \tag{15}$$

- 6. What is the moduli space metric of a single magnetic monopole? What is the geometric form of the moduli space? **Hint :** The moduli space metric g_{ij} is defined by $T = \frac{1}{2}g_{ij}\dot{X}_i\dot{X}_j$, where X_i are all the collective coordinates.
- 7. Let us assume that $\chi(t) = \lambda t$. Calculate the electric charge of the magnetic monopole (Julia-Zee Dyon).